Numerical Calculation of Thermodynamic Response of Shocked HMX Single Crystal at Elevated Temperatures

DING Kai;WANG Xinjie;HUANG Hengjian;WU Yanqing;HUANG Fenglei

Acta Armamentarii ›› 2021, Vol. 42 ›› Issue (5) : 968-978. DOI: 10.3969/j.issn.1000-1093.2021.05.009
Paper

Numerical Calculation of Thermodynamic Response of Shocked HMX Single Crystal at Elevated Temperatures

  • DING Kai1, WANG Xinjie1, HUANG Hengjian2, WU Yanqing1, HUANG Fenglei1
Author information +
History +

Abstract

A nonlinear thermoelastic-viscoplastic model is developed for studying the thermodynamic response of octogen (HMX) single crystal at elevated temperatures, in which the thermal activation and phonon drag dislocation glide regime are considered. The proposed model can reproduce the thermal hardening behavior of Hugoniot elastic limit (HEL) of HMX single crystal in plate impact experiment. The effects of phonon scattering and radiation damping on the thermal hardening behavior are quantitatively analyzed to investigate the evolution of dislocation glide regime and the thermodynamic response at 373 K and 423 K. It is found that the thermal hardening behavior of HEL of HMX single crystal is due to the increase in phonon scattering and radiation damping with the initial temperature from 300 K to 423 K. The phonon drag coefficient is increased to strengthen the viscous friction of mobile dislocation. Therefore, the average dislocation velocity decreases from 2 237 m/s to 1 537m/s, which leads to slower plastic shear strain rate and higher flow stress. The shear modulus changes slightly with the increase in temperature (about 1.0 GPa), thus the contribution of radiation damping to thermal hardening is less than that of phonon scattering.

Key words

octogen / elevatedtemperature / Hugoniotelasticlimit / thermalhardening / dislocationglideregime

Cite this article

Download Citations
DING Kai, WANG Xinjie, HUANG Hengjian, WU Yanqing, HUANG Fenglei. Numerical Calculation of Thermodynamic Response of Shocked HMX Single Crystal at Elevated Temperatures. Acta Armamentarii. 2021, 42(5): 968-978 https://doi.org/10.3969/j.issn.1000-1093.2021.05.009

References


[1]DICKJ J. Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive[J]. Applied Physics Letters, 1984, 44(9):859-861.
[2]DICKJ J, MULFORD R N, SPENCER W J, et al. Shock response of pentaerythritol tetranitrate single crystals[J]. Journal of Applied Physics, 1991, 70(7):3572-3587.
[3]DICKJ, RITCHIE J. Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate[J]. Journal of Applied Physics, 1994, 76(5):2726-2737.
[4]DICKJ J, MARTINEZ A R. Elastic precursor decay in HMX explosivecrystals[J]. AIP Conference Proceedings, 2002, 620:817- 820.
[5]DICKJ J, HOOKS D E, MENIKOFF R, et al. Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals[J]. Journal of Applied Physics, 2004, 96(1):374-379.
[6]WINEYJ M, GUPTA Y M. Anisotropic material model and wave propagation simulations for shocked pentaerythritol tetranitrate single crystals[J]. Journal of Applied Physics, 2010, 107(10):103505.
[7]BARTONN R, WINTER N W, REAUGH J E. Defect evolution and pore collapse in crystalline energetic materials[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(3): 035003.
[8]WUY Q, HUANG F L. Thermal mechanical anisotropic constitutive model and numerical simulations for shocked β-HMX single crystals[J]. European Journal of Mechanics A/Solids, 2012, 36:66-82.
[9]WANGX J, WU Y Q, HUANG F L, et al. Dynamic anisotropic response of β-HMX and α-RDX single crystals using plate impact experiments at ~1 GPa[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(8):759-770.
[10]WANGX J, WU Y Q, HUANG F L, et al. An anisotropic elastoviscoplasticity model of thermomechanical responses of shocked β-HMX and α-RDX single crystals[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(7):870-888.
[11]KRASNIKOVV S, MAYER A E, YALOVETS A P. Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations[J]. International Journal of Plasticity, 2011, 27(8):1294-1308.
[12]GURRUTXAGA-LERMAB, SHEHADEH A M, BALINT D S, et al. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminum and BCC iron[J]. International Journal of Plasticity, 2017, 96:135-155.
[13]AUSTINR. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature[J]. Journal of Applied Physics, 2018, 123(3):035103-1-035103-14.
[14]YAOS L, PEI X Y, LIU Z L, et al. Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model[J]. Mechanics of Materials, 2019, 140:103211.
[15]KOSITSKIR, MORDEHAI D. On the origin of the stress spike decay in the elastic precursor in shocked metals[J]. Journal of Applied Physics, 2019, 126(8):085901.
[16]KANELG I, SAVINYKH A S, GARKUSHIN G V, et al. Effects of temperature on the flow stress of aluminum in shock waves and rarefaction waves[J]. Journal of Applied Physics, 2020, 127(3):035901.
[17]AUSTINR A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates[J]. International Journal of Plasticity, 2011, 27(1): 1-24.
[18]LUSCHERD J, BUECHLER M A, WALTERS D J, et al. On computing the evolution of temperature for materials under dynamic loading[J]. International Journal of Plasticity, 2018, 111:188-210.
[19]STEINBERGD J, COCHRAN S G, GUINAN M W, et al. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51(3):1498-1504.
[20]LUKYANOVA A. Constitutive behaviour of anisotropic materials under shock loading[J]. International Journal of Plasticity, 2008, 24(1):140-167.
[21]PALMERSJ P, FIELDJ E. The deformation and fracture of β-HMX[J]. Proceedings of the Royal Society of London . Series A, Mathematical and Physical Sciences, 1982, 383(1785):399- 407.
[22]CUIH L, JI G F, CHEN X R, et al. Phase transitions and mechanical properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in different crystal phases by molecular dynamics simulation[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3121-3129.
[23]BISHOPJ F W, HILL R. XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses[J]. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1951, 42(327):414-427.
[24]GILMANJ J, JOHNSTON W G. Dislocations in lithium fluoride crystals[J]. Solid State Physics, 1962, 13:147-222.
[25]FOLLANSBEEP S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93.
[26]KOCKSU F, MECKING H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Science, 2003, 48(3):171-273.
[27]KOCKSU F, ARGON A S, ASHBY M F. Thermodynamics and
kinetics of slip[M]∥Chalmers B, Christian J W, Massalski T B.
Progress in Materials Science. Oxford, UK: Pergamon Press, 1975: 141-145.
[28]TAYLORG I. The mechanism of plastic deformation of crystals. Part Ⅱ. Comparison with observations[J]. Proceedings of the Royal Society. Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855):388-404.
[29]WINEYJ M, GUPTA Y M. Nonlinear anisotropic description for the thermomechanical response of shocked single crystals: inelastic deformation[J]. Journal of Applied Physics, 2006, 99(2):023510.
[30]GUPTAY M, DUVALL G E, FOWLES G R. Dislocation me-chanismsfor stress relaxation in shocked LiF[J]. Journal of Applied Physics, 1975, 46(2):532-546.
[31]HULLD, BACON D J. Introduction to dislocations[J]. Materials Today, 2011, 19(12):91-92.
[32]CLIFTONR J. On the analysis of elastic/visco-plastic waves of finite uniaxial strain[C]∥Proceedings of Sagamore Army Materials Research Conference. Syracuse, NY, US: Syracuse University Press, 1971:73-116.
[33]ARMSTRONGR W, ELBAN W L. Materials science and technology aspects of energetic (explosive) materials[J]. Materials Science and Technology, 2013, 22(4):381-395.
[34]丁凯, 王昕捷, 吴艳青,等. 高温下奥克托今单晶的冲击响应特性[J]. 兵工学报, 2020, 41(9):1783-1791.
DING K, WANG X J, WU Y Q, et al. Shock response of HMX single crystal at elevated temperatures[J]. Acta Armamentarii, 2020, 41(9):1783-1791. (in Chinese)
[35]MARSHS P. LASL shock Hugoniot data[M]. Berkeley, CA, US: University of California Press, 1980:165-166.
[36]BARRIOSM A, BOEHLY T R, HICKS D G, et al. Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves[J]. Journal of Applied Physics, 2012, 111(9):093515.
[37]JONESS C, GUPTA Y M. Refractive index and elastic properties of z-cut quartz shocked to 60 kbar[J]. Journal of Applied Physics, 2000, 88(10):5671-5679.
[38]AOT, KNUDSON M D, ASAY J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa[J]. Journal of Applied Physics, 2009, 106(10):103507
[39]LALONEB M, FATYANOV O V, ASAY J R, et al. Velocity correction and refractive index changes for [100] lithium fluoride optical windows under shock compression, recompression, and unloading[J]. Journal of Applied Physics, 2008, 103(9):093505.

368

Accesses

0

Citation

Detail

Sections
Recommended

/