PID Parameter Tuning of Self-propelled Antiaircraft Gun Servo System Based on Differential Evolution Algorithm

SUN Guoxuan;GONG Xinyu;SHI Yan;XIE Jipeng;LU Bin

Acta Armamentarii ›› 2021, Vol. 42 ›› Issue (5) : 903-912. DOI: 10.3969/j.issn.1000-1093.2021.05.002
Paper

PID Parameter Tuning of Self-propelled Antiaircraft Gun Servo System Based on Differential Evolution Algorithm

  • SUN Guoxuan1, GONG Xinyu2, SHI Yan1, XIE Jipeng1, LU Bin1
Author information +
History +

Abstract

The traditional PID parameter tuning efficiency is low and the influence of factors such as force elements among components on the parameter tuning can not be considered. An electromechanical co-simulation model of servo system is established, and the PID parameters are tuned using intelligent optimization algorithm. A servo control system model considering the attitude disturbance of moving body is established, and an electromechanical joint simulation model of servo system is established by combining with the upper mounting virtual prototype. The method of real vehicle test is used to verify the correctness of the joint simulation model. On this basis, the integral of time multiplied by the absolute value of error is used as the optimization objective function, and the PID parameters are tuned using the differential evolution algorithm (DE), and compared with the original model control parameters and the genetic algorithm (GA) tuning parameters. The joint simulation results show that,compared with the original model control parameters, the RMS value and standard deviation of the axis of firepower control error are reduced by 24.06% and 25.20%, respectively, by using the PID parameters tuned by the differential evolution algorithm for simulation, and the convergence speed is faster than that of genetic algorithm. The modeling method and parameter tuning method are effective and feasible, and have theoretical reference value for the optimization of the control accuracy axis of firepower.

Key words

self-propelledantiaircraftgun / servosystem / jointsimulation / differentialevolutionalgorithm / PIDparametertuning

Cite this article

Download Citations
SUN Guoxuan, GONG Xinyu, SHI Yan, XIE Jipeng, LU Bin. PID Parameter Tuning of Self-propelled Antiaircraft Gun Servo System Based on Differential Evolution Algorithm. Acta Armamentarii. 2021, 42(5): 903-912 https://doi.org/10.3969/j.issn.1000-1093.2021.05.002

References


[1]谢润, 杨国来. 自行高炮行进间射击炮口响应特性研究[J]. 兵工学报, 2014, 35(8):1158-1163.
XIE R, YANG G L. Research on response characteristics of muzzle for self-propelled anti-aircraft gun firing on the move[J]. Acta Armamentarii, 2014, 35(8): 1158-1163. (in Chinese)
[2]戴东明, 毛保全, 徐礼, 等. 某遥控武器站行进间射击炮口振动特性研究[J]. 火炮发射与控制学报, 2012, 33(2): 38-41.
DAI D M, MAO B Q, XU L, et al. Muzzle vibration characteristics of a remote control weapon station shooting on the move[J]. Journal of Gun Launch & Control, 2012, 33(2): 38-41. (in Chinese)
[3]陈宇, 杨国来, 谢润, 等. 某坦克行进间炮口振动优化与分析[J]. 弹道学报, 2016, 28(4): 86-89.
CHEN Y, YANG G L, XIE R, et al. Optimization and analysis of muzzle vibration for tank firing on the move[J]. Journal of Ballistics, 2016, 28(4): 86-89. (in Chinese)
[4]陈吉, 葛建立, 谢润, 等. 某防御战车行进间射击炮口动态扰动特性研究[J]. 兵器装备工程学报, 2020, 41(10): 86-90.
CHEN J, GE J L, XIE R, et al. Research on muzzle disturbance of missile-gun integrated vehicle during firing on move[J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 86-90. (in Chinese)
[5]刘昕运, 马吉胜, 何健, 等. 某自行火炮行进间射击建模与动态响应分析[J]. 火炮发射与控制学报, 2016, 37(3): 6-10,16.
LIU X Y, MA J S, HE J, et al. Modeling and dynamic response of a self-propelled gun firing on the move[J]. Journal of Gun Launch & Control, 2016, 37(3): 6-10,16. (in Chinese)
[6]宋雨荷, 王军, 解军, 等. 行进间射击时路面谱作用下的高炮随动误差仿真分析[J]. 指挥控制与仿真, 2020.[2020-07-02]http:kns.cnki.net/kcms/detail/32.1759.1628.004.html.
SONG Y H, WANG J, XIE J, et al. Simulation analysis of servo following error of antiaircraft gun under the effect of road spectrum in marching fire[J].Command Control & Simulation, 2020. [2020-07-02]http:kns.cnki.net/kcms/detail/32.1759.1628.004.html. (in Chinese)
[7]吕璐. 行进间车载伺服系统控制策略及路谱算法研究[D]. 南京:南京理工大学, 2017.
L L. Research on control strategy and road spectrum algorithm of vehicle mounted servo system[D]. Nanjing: NanJing University of Science and Technology, 2017. (in Chinese)
[8]张双运, 苏娟莉, 王波, 等. 轮式自行高炮射击线补偿的一种途径[J]. 火炮发射与控制学报, 2009, 31(4): 1-3.
ZHANG S Y, SU J L, WANG B, et al. Fire line compension method of wheeled self-propelled AA gun system[J]. Journal of Gun Launch & Control, 2009, 31(4): 1-3. (in Chinese)
[9]胡继辉, 侯远龙, 高强, 等. 坦克炮控系统神经网络自适应滑模控制方法[J]. 火力与指挥控制, 2018, 43(6): 118-121.
HU J H, HOU Y L, GAO Q, et al. Method of network adaptive sliding mode control of gun control system of tank[J]. Fire Control & Command Control, 2018, 43(6): 118-121. (in Chinese)
[10]吕家兵, 侯远龙, 高强, 等. 坦克炮控系统的复合自抗扰控制研究[J]. 自动化技术与应用, 2020, 39(4): 1-7.
L J B, HOU Y L, GAO Q, et al. Research on composite active disturbance rejection control of tank gun servo system[J].Techniques of Automation and Applications, 2020, 39(4): 1-7. (in Chinese)
[11]尹达一, 黄玉婷, 刘云芳. 基于MATLAB/Simulink的双电机速度跟踪伺服系统仿真[J]. 中国惯性技术学报, 2011, 19(2): 229-233.
YIN D Y, HUANG Y T, LIU Y F. Simulation of double-motor speed tracking servo system based MATLAB/Simulink[J]. Journal of Chinese Inertial Technology, 2011, 19(2):229-233. (in Chinese)
[12]阮毅, 杨影, 陈伯时. 电力拖动自动控制系统—运动控制系统[M]. 第5版. 北京:机械工业出版社, 2016:68-73.
RUAN Y, YANG Y, CHEN B S. Control systems of electric drives-motion control systems [M]. 5th ed. Beijing: China Machine Press, 2016:68-73. (in Chinese)
[13]STORNR, PRICE K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[14]刘金琨. 先进PID控制MATLAB仿真[M]. 第4版. 北京:电子工业出版社, 2016:329-332.
LIU J K. Advanced PID control and MATLAB simulation[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2016:329-332. (in Chinese)
[15]谭飞, 曹立佳. 基于改进动态变异差分进化的最优PID控制[J]. 控制工程, 2019, 26(3):461-468.
TAN F, CAO L J. Optimal PID control based on the improved dynamic mutation differential evolution algorithm[J]. Control Engineering of China, 2019, 26(3):461-468. (in Chinese)


Accesses

Citation

Detail

Sections
Recommended

/