Influence of Angle of Attack on Initial Ejection Trajectory of Missile

ZHANG Bing;HOU Ming;WANG Dianyu;DONG Youliang

Acta Armamentarii ›› 2021, Vol. 42 ›› Issue (2) : 438-448. DOI: 10.3969/j.issn.1000-1093.2021.02.021
Research Notes

Influence of Angle of Attack on Initial Ejection Trajectory of Missile

  • ZHANG Bing, HOU Ming, WANG Dianyu, DONG Youliang
Author information +
History +

Abstract

For the instability of separation process of missile, the influence of angle of attack on the initial ejection trajectory of air-to-air missile is analyzed by solving fluid dynamics equations and 6DOF equations of rigid body. Referring to American AEDC's captive trajectory system (CTS) testing, in which uses a generic wing/pylon/finned store model, a similar geometric model is established and numerical calculation is carried out. The feasibility of the numerical calculation method is verified by comparing the numerical results and the CTS results in Ref.[29]. Themethod is used to calculate and analyze the initial trajectory of an air-to-air missile launched from a fourth-generation fighter under different angles of attack. The following laws are revealed by the analysis: under supersonic condition, 6DOF motion of missile is apparently influenced by the angle of attack at the initial ejection stage. With the increase in the angle of attack, the pitch motion of missile becomes more intense, the roll angle becomes larger, and the yaw angle becomes smaller. The velocity of missile-separation from aiacraft decreases obviously, and the safety of missile-separation from aiacraft decreases gradually.

Key words

missile / missileseparationfromaiacraft / embeddedbombbay / dynamicmesh / ejectiontrajectory / angleofattack

Cite this article

Download Citations
ZHANG Bing, HOU Ming, WANG Dianyu, DONG Youliang. Influence of Angle of Attack on Initial Ejection Trajectory of Missile. Acta Armamentarii. 2021, 42(2): 438-448 https://doi.org/10.3969/j.issn.1000-1093.2021.02.021

References


[1]冯金富, 杨松涛, 刘文杰. 战斗机武器内埋关键技术综述 [J]. 飞航导弹, 2010(7): 71-74.
FENG J F, YANGS T, LIU W J. Summary of key technologies for embedding fighter weapons [J]. Aerodynamic Missile Journal, 2010 (7): 71-74. (in Chinese)
[2]常超, 丁海河. 内埋弹射武器机弹安全分离技术综述 [J]. 现代防御技术, 2012, 40(5): 67-74.
CHANG C, DING H H.Review on missile store safety separation technology of embedded ejection weapons [J]. Modern Defence Technology, 2012, 40(5): 67-74. (in Chinese)
[3]刘乐卿, 张全, 刘浩. F/A-22隐身战机武器投放仿真与试验技术 [J]. 兵器装备工程学报, 2016, 37(10): 8-12.
LIU L Q, ZHANG Q, LIU H.Weapon separation modeling simulation and test of F/A-22 stealth fighter [J]. Journal of Ordnance Equipment Engineering, 2016, 37(10): 8-12. (in Chinese)
[4]LIJEWSKIL E, SUHS N E. Time-accurate computational fluid dynamics approach to transonic store separation trajectory prediction [J]. Journal of Aircraft, 1994, 31(4): 886-891.
[5]PREWITTN C, BELK D M, SHYY W. Parallel computing of overset grids for aerodynamic problems with moving objects [J]. Progress in Aerospace Sciences, 2000, 36(2): 117-172.
[6]SNYDERD, KOUTSAVDIS E, ANTTONEN J. Transonic store separation using unstructured CFD with dynamic meshing [C]∥Proceedings of the 33rd AIAA Fluid Dynamics Conference And Exhibit. Orlando, FL, US: AIAA, 2003: 3919.
[7]KOOMULLILR, CHENG G, SONI B, et al. Moving-body simulations using overset framework with rigid body dynamics [J]. Mathematics & Computers in Simulation, 2008, 78(5/6): 618-626.
[8]PREWITTN C, BELK D M, MAPLE R C. Multiple-body trajectory calculations using the Beggar Code [J]. Journal of Aircraft, 2012, 36(5): 802-808.
[9]OSMANA A, ALY A M, KHALIL E E, et al. Numerical analysis of an external store separation from an airplane [C]∥Proceedings ofAIAA Modeling and Simulation Technologies Conference. San Diego, CA, US: AIAA, 2016: 2143.
[10]BAYSALO, FOULADI K, LEUNG W, et al. Interference flows past cylinder-fin-sting-cavity assemblies [J]. Journal of Aircraft, 1992, 29(2): 194-202.
[11]FOULADIK, BAYSAL O. Viscous simulation method for unsteady flows past multicomponent configurations [J]. Journal of Fluids Engineering, 1992, 114(2): 161-169.
[12]LAWSONS J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows [J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216.
[13]ANANDHANARAYANANK, ARORA K, SHAH V, et al. Se-paration dynamics of air-to-air missile using a grid-free Euler solver [J]. Journal of Aircraft, 2013, 50(3): 725-731.
[14]JOHNSONM W. A novel Cartesian CFD cut cell approach [J]. Computers & Fluids, 2013, 79: 105-119.
[15]MERRICKJ D. Influence of Mach number and dynamic pressure on cavity tones and freedrop trajectories [D]. Wright-Patterson AFB, OH, US: Air Force Institute of Technology, 2014.
[16]沈琼, 余雄庆. 无人机机载导弹分离轨迹的数值仿真 [J]. 弹箭与制导学报, 2009, 29(5): 99-102.
SHEN Q, YU X Q. Numerical simulation of trajectory of missile separated from UAV [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(5): 99-102. (in Chinese)
[17]李杰, 纪秀玲, 孙超. 不同释放力组合下小型外挂物投放的数值模拟 [J]. 北京理工大学学报, 2010, 30(3): 23-26.
LI J, JI X L, SUN C. Computational studies of light stores separation with various ejector forces [J]. Transactions of Beijing Institute of Technology, 2010, 30(3): 23-26. (in Chinese)
[18]段旭鹏, 常兴华, 张来平. 基于动态混合网格的多体分离数值模拟方法 [J]. 空气动力学学报, 2011, 29(4): 447-452.
DUAN X P, CHANG X H, ZHANG L P. A CFD-and-6DOF-coupled solver for multiple moving object problems based on dynamic hybrid grids [J]. Acta Aerodynamica Sinica, 2011, 29(4):447-452. (in Chinese)
[19]唐上钦, 黄长强, 翁兴伟. 考虑气动干扰的导弹内埋式发射弹道研究 [J]. 弹箭与制导学报, 2013, 33(3): 138-142.
TANG S Q, HUANG C Q, WENG X W. The Study ontrajectory of missile separating from cavity with aerodynamic interference considered [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3): 138-142. (in Chinese)
[20]曾铮, 王刚, 叶正寅. RBF整体网格变形技术与多体轨迹仿真 [J]. 空气动力学学报, 2015, 33(2): 170-177.
ZENG Z, WANG G, YE Z Y. Enhanced RBF mesh deformation method and multi-body trajectory simulation [J]. Acta Aerodynamica Sinica, 2015, 33(2): 170-177. (in Chinese)
[21]郭少杰, 王斌, 周培培, 等. 隐身无人机内埋武器分离安全性数值研究 [J]. 机械科学与技术, 2017, 36(增刊1): 1-7.
GUO S J, WANG B, ZHOU P P, et al. Numerical analysis for internal weapon separation performance of a stealth UAV [J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(S1): 1-7. (in Chinese)
[22]范晶晶, 张海瑞, 管飞, 等. 外挂式导弹机弹分离气动干扰特性研究 [J]. 国防科技大学学报, 2018, 40(2): 13-21.
FAN J J, ZHANG H R, GUAN F, et al. Studies of aerodynamic interference characteristics for external store separation [J]. Journal of National University of Defense Technology, 2018, 40(2):13-21. (in Chinese)
[23]朱世权, 李海元, 陈志华, 等. 攻角对空空导弹与载机分离过程的影响 [J]. 工程力学, 2018, 35(9): 248-256.
ZHU S Q, LI H Y, CHEN Z H, et al. Influences of angles of attack during the separation of an air-to-air missile from the aircraft [J]. Engineering Mechanics, 2018, 35(9): 248-256. (in Chinese)
[24]雷娟棉, 牛健平, 王锁柱, 等. 初始分离条件对航弹与载机分离安全性影响的数值模拟研究 [J]. 兵工学报, 2016, 37(2):357-366.
LEI J M, NIU J P, WANG S Z, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft [J]. Acta Armamentarii, 2016, 37(2): 357-366. (in Chinese)
[25]朱收涛, 曹林平, 封普文, 等. 平飞时内埋导弹弹射分离仿真与研究 [J]. 电光与控制, 2012, 19(9): 67-71,75.
ZHU S T, CAO L P, FENG P W, et al.Simulation of missile separation from internal weapon bay [J]. Electronics Optics & Control, 2012, 19(9): 67-71,75. (in Chinese)
[26]郭亮, 王纯, 叶斌, 等. 采用流动控制的超声速内埋物投放特性研究 [J]. 航空学报, 2015, 36(6): 1752-1761.
GUO L, WANG C, YE B, et al. Investigation on characteristics of store release from internal bay in supersonic flow under flow control [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1752-1761. (in Chinese)
[27]闫盼盼, 张群峰, 金明, 等. 内埋武器发射参数对下落轨迹的影响 [J]. 工程力学, 2018, 35(1): 246-256.
YAN P P, ZHANG Q F, JIN M, et al. Effects of launching parameters on the separation trajectory of internal weapons [J]. Engineering Mechanics, 2018, 35(1): 246-256. (in Chinese)
[28]艾邦成, 宋威, 董垒, 等. 内埋武器机弹分离相容性的研究进展综述 [J/OL]. 航空学报, 2020. [2020-03-27]. http:∥kns.cnki.net/kcms/detail/11.1929.V. 20200223.2144.004.html.
AI B C, SONG W, DONG L, et al. Review on aircraft-store se-paration compatibility for the internal weapons [J/OL]. Acta Aeronautica et Astronautica Sinica, 2020. [2020-03-27]. http:∥kns.cnki.net/kcms/detail/ 11.1929.V.20200223.2144.004.html. (in Chinese)
[29]HEIME R. CFD wing/pylon/finned store mutual interference wind tunnel experiment:AEDC-TSR-91-P4 [R]. Arnold AFB, TN, US: Arnold Engineering Development Center, 1991.




下4篇留版

Collection(s)

Ballistics

413

Accesses

0

Citation

Detail

Sections
Recommended

/