Modeling and Simulation of Electromagnetic Railgun Launching Process Based on a Transient Multi-physical Field Solver

LIN Qinghua;LI Baoming

Acta Armamentarii ›› 2020, Vol. 41 ›› Issue (9) : 1697-1707. DOI: 10.3969/j.issn.1000-1093.2020.09.001
Paper

Modeling and Simulation of Electromagnetic Railgun Launching Process Based on a Transient Multi-physical Field Solver

  • LIN Qinghua, LI Baoming
Author information +
History +

Abstract

A mathematical model, including the circuit, electromagnetic field, thermal field and structural field, is established to study the interaction mechanisms and inherent laws of transient multi-physical fields in the launching process of an electromagnetic railgun. Some actual factors, such as material nonlinearity, structural deformation, contact and collision, are also accounted in the model. The electromagnetic and thermal fields are solved by the implicit finite element method, the structural field is solved by the explicit finite element method, and these fields are coupled by load transfer and time synchronization. Thus a transient multi-physical field solver was developed. The rationality of the calculated results is discussed by taking the launching processes of solid-armature railgun and synchronous induction coilgun as example. The results show that the launch of an electromagnetic gun is a complex dynamic process under multi-physical field coupling and multi-body interaction, in which some transient phenomena, such as current and magnetic field diffusion, temperature rise, stress propagation, contact and collision, exist. The launching performance is closely related to the structures, material properties and excitations.

Key words

electromagneticrailgun / coilgun / solver / transientmulti-physicalfield / finiteelement

Cite this article

Download Citations
LIN Qinghua, LI Baoming. Modeling and Simulation of Electromagnetic Railgun Launching Process Based on a Transient Multi-physical Field Solver. Acta Armamentarii. 2020, 41(9): 1697-1707 https://doi.org/10.3969/j.issn.1000-1093.2020.09.001

References


[1]ANS, LEE B, BAE Y, et al. Numerical analysis on the transient inductance gradient of the resistive overlay rail on the sliding electrical contact[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2339-2342.
[2]LIS Z, WANG X X, ZHANG S S, et al. Study on the lumped evaluation model of sliding electrical contact performance of railgun[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2404-2411.
[3]HSIEHK T, THIAGARAJAN V. A novel, split-domain iteration scheme for solution of electromagnetic diffusion problems modeled by the hybrid finite element-boundary element formulation[J]. IEEE Transactions on Magnetics, 2009, 45(1): 587-590.
[4]RODGERD, LAI H C.A comparison of formulations for 3D finite element modeling of electromagnetic launchers[J]. IEEE Transactions on Magnetics, 2001, 37(1): 135-138.
[5]SHATOFFH, PEARSON D A, KULL A E. Simulation of dyna- micarmature motion in a railgun with coupling of electromagnetic,
thermal and structural effects using shifted finite element fields[C]∥Proceedings of IEEE Pulsed Power Conference. Monterey, CA, US: IEEE, 2005: 253-256.
[6]TANS, LU J Y, LI B, et al. A new finite-element method to deal with motion problem of electromagnetic rail launcher[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1374-1379.
[7]WANGG H, XIE L, HE Y, et al. Moving mesh FE/BE hybrid simulation of electromagnetic field evolution for railgun[J]. IEEE Transactions on Plasma Science,2016,44(8): 1424-1428.
[8]HOPKINSD A, STEFANI F, HSIEH K T, et al. Analysis of startupbehavior in a “C-shaped” armature using linked EMAP3D/DYNA3D finite element codes[J].IEEE Transactions on Magnetics,1999, 35(1): 59-64.
[9]LEYDENC, CRITCHLEY R, DOWNEY J A. 3D softly coupled electromagnetic/thermal/structural analysis using MEGA-DYNA3D[C]∥Proceedings of the 6th European Symposium on Electromagnetic Launch Technology. Delft, the Netherland:TNO Prins Maurits Laboratory,Pulse Physics Laboratory, 1997: 165-169.
[10]殷强, 张合, 李豪杰, 等. 考虑电枢与导轨实际接触状态的电磁轨道炮膛内磁场分析[J]. 兵工学报, 2019, 40(3): 464-472.
YIN Q, ZHANG H, LI H J, et al. Analysis of in-bore magnetic field in electromagnetic railgun considering the realistic armature-rail contact status[J].Acta Armamentarii, 2019, 40(3): 464-472. (in Chinese)
[11]何永海, 王豫, 谭诚, 等. 一种新型结构的直线旋转加速线圈炮研究[J]. 兵工学报, 2018, 39(9): 1858-1863.
HE Y H, WANG Y, TAN C, et al. A new structure of linear rotating accelerated coilgun[J].Acta Armamentarii, 2018, 39(9):1858-1863. (in Chinese)
[12]马伟明, 鲁军勇, 李湘平. 电磁发射超高速一体化弹丸[J]. 国防科技大学学报, 2019, 41(4): 1-10.
MA W M, LU J Y, LI X P. Electromagnetic launch hypervelocity integrated projectile[J]. Journal of National University of Defense Technology, 2019, 41(4): 1-10. (in Chinese)
[13]马新科, 邱群先, 何行, 等. 螺栓紧固式轨道炮后坐规律研究[J]. 兵工学报, 2019, 40(6): 1297-1303.
MA X K, QIU Q X, HE H, et al. Research on recoil law of bolt-fastedned railgun[J].Acta Armamentarii, 2019, 40(6): 1297- 1303. (in Chinese)
[14]ZHANGT, GUO W, SU Z Z, et al. Optimal design and testing of the driving coil on induction coilgun[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2957-2962.
[15]LINQ H, LI B M, KWOK D Y. Transient heating effects in electromagnetic launchers with complex geometries: a 3D hybrid FE/BE analysis[J]. The European Physical Journal-Special Topics,2009, 171: 135-143.
[16]林庆华, 栗保明. 电磁轨道炮瞬态温度场的数值模拟[J]. 工程热物理学报, 2017, 38(1): 149-154.
LIN Q H, LI B M. Numerical simulation of transient temperature field in the electromagnetic railgun[J]. Journal of Engineering Thermophysics, 2017, 38(1): 149-154. (in Chinese)
[17]张雄, 王天舒. 计算动力学[M]. 北京: 清华大学出版社, 2007: 236-317.
ZHANG X, WANG T S. Computational dynamics[M]. Beijing: Tsinghua University Press, 2007: 236-317.(in Chinese)
[18]YIND M, XIAO H C, LI B M. Dynamics response of filament-wound composite barrel for rail gun with acceleration load[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1847-1854.
[19]郑军强, 黄寅生, 李龙宝, 等. 线性聚能切割器销毁大口径弹药的数值模拟[J]. 四川兵工学报, 2015, 36(6): 69-74.
ZHENG J Q, HUANG Y S, LI L B, et al. Numerical simulation of large caliber ammunition destruction by linear shaped charge cutter[J]. Journal of Sichuan Ordnance, 2015, 36(6): 69-74. (in Chinese)
[20]李贞晓, 张亚舟, 倪琰杰, 等. 晶闸管关断特性在增强型轨道发射系统中的影响分析[J]. 兵工学报, 2016, 37(9): 1599-1605.
LI Z X, ZHANG Y Z, NI Y J, et al. Analysis on the influence of turn-off characteristics of thyristor on augmented railgun[J].Acta Armamentarii, 2016, 37(9): 1599-1605. (in Chinese)
[21]LINQ H, LI B M. Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model[J]. Defence Technology, 2016, 12(2):101-105.
[22]LEONARDP J,LAI H C,HAINSWORTH G,et al.Analysis of the performance of tubular pulsed coil induction launchers[J].IEEE Transactions on Magnetics,1993,29(1):686-690.
[23]MARDERB. SLINGSHOT-a coilgun design code: SAND2001—1780[R]. Albuquerque,NM,US:Sandia National Laboratories, 2001: 4-13.
[24]MADHAVANS, SIJOY C D, PAHARI S, et al. Significance of armature resistivity and deformation in modeling coilgun perfor- mance[J]. IEEE Transactions on Plasma Science, 2014, 42(2):323-329.


449

Accesses

0

Citation

Detail

Sections
Recommended

/