Analysis of Sliding Electric Contact Characteristics of Series-augmented Railgun Based on Breech Voltage

ZHU Chunyan;WANG Jun;MA Fuqiang;NI Yanjie;TANG Bo;LI Baoming

Acta Armamentarii ›› 2020, Vol. 41 ›› Issue (7) : 1280-1287. DOI: 10.3969/j.issn.1000-1093.2020.07.004
Paper

Analysis of Sliding Electric Contact Characteristics of Series-augmented Railgun Based on Breech Voltage

  • ZHU Chunyan, WANG Jun, MA Fuqiang, NI Yanjie, TANG Bo, LI Baoming
Author information +
History +

Abstract

An analysis method based on the breech voltage is proposed to study the sliding contact resistance characteristics of the partially augmented electromagnetic railgun. A mathematical model of contact resistance, breech voltage, breech inducted voltage and rail current is constructed. The proposed model is used to quantitatively characterize the sliding contact resistance. Through the analysis of the characteristics of the contact resistance waveform, the state of contactbetween armature and rail is divided into four stages: start-up stage, resistancesteady decline stage, resistance growth stage, and single rail stage. The launch efficiency of launching system and the energy consumption rate of contact resistance Joule heat are calculated. The results show that the contact resistance is high as the interface between the armature and rails is in a solid-solid contact state at the initial startup stage; the gradually formed aluminum melt film increases the actual contact area and improves the contact state; the contact pressure is negatively correlated with contact resistance; the contact resistance is an important factor affecting launching efficiency. Therefore, the analysis of the sliding electric contact characteristics of the partially angmented railgun plays a positive role in the mechanism research and design of the railgun. Key

Key words

partiallyaugmentedelectromagneticrailgun / contactresistance / breechvoltage / contactresistanceJouleheat

Cite this article

Download Citations
ZHU Chunyan, WANG Jun, MA Fuqiang, NI Yanjie, TANG Bo, LI Baoming. Analysis of Sliding Electric Contact Characteristics of Series-augmented Railgun Based on Breech Voltage. Acta Armamentarii. 2020, 41(7): 1280-1287 https://doi.org/10.3969/j.issn.1000-1093.2020.07.004

References



[1]FAIRH D. Progress in electromagnetic launch science and technology[J]. IEEE Transactions on Magnetics, 2007, 43(1): 93-98.
[2]FAIR H D. Electromagnetic launch[J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10): 247-262.
[3]LI B M, LIN Q H. Analysis and discussion on launching mechanism and tactical electromagnetic railgun technology [J]. Defence Technology, 2018, 14(5): 141-143.
[4]王莹, 肖峰. 电炮原理[M]. 北京: 国防工业出版社, 1995.
WANG Y, XIAO F. The theory of electrical gun[M]. Beijing: National Defense Industry Press, 1995. (in Chinese)
[5]林庆华,栗保明. 电磁轨道炮三维瞬态涡流场的有限元建模与仿真[J]. 兵工学报, 2009, 30(9): 1159-1163.
LIN Q H, LI B M. Finite element analysis of 3D transient eddy field in electromagnetic railgun[J].Acta Armamentarii, 2009, 30(9):1159-1163. (in Chinese)
[6]殷强, 张合, 李豪杰, 等. 考虑电枢与导轨实际接触状态的电磁轨道炮膛内磁场分析[J]. 兵工学报, 2019, 40(3): 464-472.
YIN Q, ZHANG H, LI H J, et al. Analysis of in-bore magnetic field in electromagnetic railgun considering the realistic armature-rail contact status[J]. Acta Armamentarii, 2019, 40(3): 464-472. (in Chinese)
[7]MARSHALL R A, WANG Y. Railguns: their science and technology[M]. Beijing: China Machine Press, 2004.
[8]GALLANT J. Parametric study of an augmented railgun[J].IEEE Transactions on Magnetics, 2003, 39(1): 451-456.
[9]ENGEL T G, VERACKA M J, NERI J M, et al. Design of low-current high-efficiency augmented railguns[J]. IEEE Transactions on Plasma Science, 2009, 37(12): 2385-2389.

[10]石江波,栗保明. 串联增强型电磁轨道炮螺栓预紧封装性能分析[J]. 火炮发射与控制学报, 2016, 37(1): 1-6.
SHI J B, LI B M. The encapsulation performance analysis of series enhanced electromagnetic railgun with bolt pre-tightening[J]. Journal of Gun Launch & Control, 2016, 37(1): 1-6. (in Chinese)
[11]邢彦昌, 吕庆敖, 雷彬, 等. 多匝串联并列轨道炮U形电枢接触界面熔蚀规律分析[J]. 兵工学报, 2018, 39(11): 2081-2091.
XING Y C, L Q A, LEI B, et al. Analysis of melting erosion characteristic on the contact interface between U-shaped armature and rails for multiturn serial-parallel railgun[J]. Acta Armamentarii, 2018, 39(11): 2081-2091. (in Chinese)
[12]何勇, 宋盛义, 关永超, 等. 电磁轨道炮高速滑动接触电阻的定量表征[J]. 强激光与粒子束, 2014, 26(4):87-90.
HE Y, SONG S Y, GUAN Y C, et al. Quantitative expression of sliding contact resistance between armature and rail in railgun[J]. High Power Laser and Particle Beams, 2014, 26(4):87-90.(in Chinese)
[13]王振春, 鲍志勇, 曹海要, 等. 增强型电磁轨道炮电枢轨道接触特性研究[J]. 兵工学报, 2018, 39(3): 452-456.
WANG Z C, BAO Z Y, CAO H Y, et al. Research on contact characteristics of armature and rail in augmented electromagnetic railgun[J]. Acta Armamentarii, 2018, 39(3): 452-456. (in Chinese)
[14]张亚舟, 李贞晓, 金勇, 等. 电磁发射用13 MJ脉冲功率电源系统研究[J]. 兵工学报, 2016, 37(5): 778-784.
ZHANG Y Z, LI Z X, JIN Y, et al. Research and development on a 13 MJ pulsed power supply for electromagnetic launcher[J]. Acta Armamentarii, 2016, 37(5): 778-784. (in Chinese)
[15]DEADRICKF J, HAWKE R S, SCUDDER J D. Magrac—a railgun simulation program[J]. IEEE Transactions on Magnetics, 1982, 18 (1): 94-104.
[16]楼宇涛. 电磁轨道炮管身涡流的理论和实验研究[D]. 南京:南京理工大学, 2017.
LOU Y T. Theoretical and experimental research on the containment eddy-current in electromagnetic railgun[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
[17]HOLM R. Electrical contacts-theory and applications[M]. Berlin, Germany: Springer-Verlag, 1967.
[18]TIMSIT R S. Electrical contact resistance: properties of stationary interfaces[J]. IEEE Transactions on Components and Packaging Technology, 1999, 22(1): 85-98.
[19]LI B, MA W M,LU J Y, et al. Effects of supply current and armature structure on melting characteristics of armature surface in sliding electric contact[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 721-728
[20]KOTHMANN R E, STEFANI F. A thermal hydraulic model of melt-lubrication in railgun armatures[J]. IEEE Transactions on Magnetics, 2001, 37(1): 86-91.
[21]STEFANI F, LEVINSON S, SATAPATHY S, et al. Electrodynamic transition in solid armature railguns[J]. IEEE Transactions on Magnetics, 2001, 37(1): 101-105.
[22]ZHU C Y, LI L, YUE J, et al. Determining the effect of an arc in a railgun bore on emission efficiency using B-dot probes[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 2175-2180.







第41卷第7期2020年7月
兵工学报ACTA ARMAMENTARII
Vol.41No.7Jul.2020

471

Accesses

0

Citation

Detail

Sections
Recommended

/