Low-cycle Fatigue Life Prediction and Validation of Main Shaft of Power-shift Steering Transmission Based on Dynamic TorqueMeasurement

WANG Cheng;MAO Feihong;HOU Wei;ZHANG Jinle;ZOU Tiangang

Acta Armamentarii ›› 2020, Vol. 41 ›› Issue (7) : 1262-1269. DOI: 10.3969/j.issn.1000-1093.2020.07.002
Paper

Low-cycle Fatigue Life Prediction and Validation of Main Shaft of Power-shift Steering Transmission Based on Dynamic TorqueMeasurement

  • WANG Cheng, MAO Feihong, HOU Wei, ZHANG Jinle, ZOU Tiangang
Author information +
History +

Abstract

In order to solve the low-cycle fatigue failure of main shaft of power-shift steering transmission, the dynamic torque of main shaft was measured during pavement testing, and the fatigue sample was analyzed. An elastoplastic finite element model of main shaft is established to predict the low-cycle fatigue life of main shaft. The low-cycle fatigue test of main shaft was made to verify the low-cycle fatigue life prediction method. The results show that the impulsive torque of tracked vehicle in starting stage is the main cause of low-cycle fatigue of main shaft. For the asymmetric structure, the impulsive torque on the right side of main shaft is about 1.54 times of that on the left side. The maximum stress of main shaft is 1 510 MPa, and the maximum strain is 0.008 692 3, both occur at the root of boundary between output spline and transition arc on the right side, which is consistent with the fatigue fracture location of fatigue sample. The number of main shaft withstanding the starting impact torque is 17 082, the number of main shafts withstanding the starting impact torque obtained by bench tests is 5 000, and the number of main shafts withstanding the starting impact torque obtained by low-cycle fatigue life prediction is 5 843. The simulated results are basically consistent with test results, which verifies the feasibility of the low-cycle fatigue life prediction method. Key

Key words

power-shiftsteeringtransmission / mainshaft / low-cyclefatigue / dynamictorquemeasurement

Cite this article

Download Citations
WANG Cheng, MAO Feihong, HOU Wei, ZHANG Jinle, ZOU Tiangang. Low-cycle Fatigue Life Prediction and Validation of Main Shaft of Power-shift Steering Transmission Based on Dynamic TorqueMeasurement. Acta Armamentarii. 2020, 41(7): 1262-1269 https://doi.org/10.3969/j.issn.1000-1093.2020.07.002

References



[1]XIANGC L, CHEN X, ZHONG Q S. Methods of random fatigue design for vehicle transmission system components[J]. Journal of Beijing Institute of Technology,2000,9(4):353-357.
[2]陈东升, 陈欣.车辆传动系轴类零件多工况随机疲劳设计[J].机械设计,2002,19(6):50-52.
CHEN D S, CHEN X. Random fatigue design od shafts for vehicle transmission system components[J]. Journal of Machine Design,2002,19(6):50-52. (in Chinese)
[3]赵梓烨,刘海鸥,陈慧岩,等.某轻型履带车辆起步阶段下主离合器接合过程传动轴疲劳损伤研究[J].兵工学报,2018,39(8): 1466-1472.
ZHAO Z Y, LIU H O, CHEN H Y, et al. Research on fatigue damage of transmission shaft in the process of main clutch engagement during starting of a tracked vehicle[J].Acta Armamentarii,2018,39(8):1466-1472.(in Chinese)
[4]刘海鸥, 张文胜, 徐宜, 等. 基于核密度估计的履带车辆传动轴载荷谱编制[J]. 兵工学报, 2017,38(9):1830-1838.
LIU H O, ZHANG W S, XU Y, et al. Load spectrum compiling for transmission shaft of tracked vehicle based on kernel density estimation[J]. Acta Armamentarii, 2017, 38(9): 1830-1838.(in Chinese)
[5]周杰,贾云献,刘鑫,等. 基于疲劳寿命的履带车辆侧减速器传动轴结构优化[J].机械设计,2019(4):82-86.
ZHOU J, JIA Y X, LIU X, et al. Structural optimization of transmission shaft of planetary reducer of tracked vehicle based on fatigue life [J]. Journal of Machine Design, 2019(4):82-86. (in Chinese)
[6]刘喆, 陶凤和, 贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5):431-437.
LIU Z, TAO F H, JIA C Z. Fatigue prediction on drive shaft of vehicle and structure optimization[J]. Chinese Journal of Engineering Design,2015, 22(5):431-437. (in Chinese)
[7]林明芳,张洪欣. 汽车半轴疲劳寿命预测和可靠性设计[J].汽车工程, 1991, 13(4): 235-242.
LIN M F, ZHANG H X. Fatigue life prediction and reliability design of automobile axle shaft [J]. Automotive Engineering, 1991, 13(4): 235-242. (in Chinese)
[8]门玉琢, 于海波, 刘博, 等, 汽车传动系高速变速耐久性断裂部件试验研究[J].振动与冲击, 2016,35(23): 95-99.
MEN Y Z, YU H B, LIU B, et al. Varying and high speed tests for durability and fracture behavior of powertrain components[J].Journal of Vibration and Shock, 2016,35(23): 95-99. (in Chinese)
[9]邹喜红, 李静, 彭吉刚, 等. 基于实际载荷谱的汽车半轴疲劳寿命预测[J]. 机械设计与制造, 2016(4):122-125, 129.
ZOU X H, LI J, PENG J G, et al. Fatigue life prediction of automobile axle shaft based on the actual load spectrum[J]. MachineryDesign and Manufacture,2016(4):122-125, 129.(in Chinese)

[10]ZHAOL H, XING Q K, WANG J Y, et al. Failure and root cause analysis of vehicle drive shaft[J]. Engineering Failure Analysis,2019,99:225-234.
[11]宋美球,刘云鹏,党玲,等.特种车辆扭矩测试仪的研制[J].车辆与动力技术,2012(1):26-29,64.
SONG M Q, LIU Y P, DANG L, et al. Research on torque test instrument of special vehicle[J]. Journal of Aeronautical Materials, 2012(1):26-29,64. (in Chinese)
[12]姚卫星. 结构疲劳寿命分析[M].北京:国防工业出版社, 2003.
YAO W X. Fatigue life prediction of structures[M].Beijing: National Defense Industry Press, 2003. (in Chinese)
[13]马少海, 厉勇, 王春旭, 等.Q-P工艺下超高强度300M钢的单轴拉伸规律研究[J].航空材料学报,2014,34(3):42-47.
MA S H, LI Y, WANG C X, et al. Law of uniaxial tensile of ultra-high strength 300M steel treated by quenching partitioning process[J]. Journal of Aeronautical Materials,2014,34(3):42-47.(in Chinese)
[14]中国钢铁工业协会.金属材料薄板和薄带拉伸应变硬化指数(n值)的测定:GB/T 5028—2008[S].北京:中国标准出版社,2008.
China Iron and Steel Association.Metallic materials—sheet and strip—determination of tensile strain hardening exponent: GB/T 5028— 2008[S]. Beijing: Standards Press of China,2008. (in Chinese)
[15]MORROW J D. Fatigue design handbook[J]. Advances in Engineering, 1968, 4:21-29.
[16]惠卫军, 董翰, 翁宇庆, 等. 回火温度对Cr-Mo-V系高强度钢力学性能的影响[J].金属学报,2002,38(10): 1009-1014.
HUI W J, DONG H, WENG Y Q, et al. Effect of heat treatment parameters on mechanical properties of high strength Cr-Mo-V steel[J]. Acta Metallurgica Sinica, 2002,38(10): 1009-1014. (in Chinese)






第41卷第7期2020年7月
兵工学报ACTA ARMAMENTARII
Vol.41No.7Jul.2020

492

Accesses

0

Citation

Detail

Sections
Recommended

/