Behavior Mechanism Equation of Submarine Acoustic Perception Based on Engagement Process

ZHANG Dongjun;LI Xiao;MI Yang

Acta Armamentarii ›› 2020, Vol. 41 ›› Issue (5) : 958-966. DOI: 10.3969/j.issn.1000-1093.2020.05.015
Paper

Behavior Mechanism Equation of Submarine Acoustic Perception Based on Engagement Process

  • ZHANG Dongjun,LI Xiao,MI Yang
Author information +
History +

Abstract

The detection ability of submarine is the prerequisite to obtain the operational advantage in the actual combat. Acoustic detection, as the most important sensing detection means of submarine, is closely related to submarine attitude, relative position, combat behavior and environment. Static acoustic detection index dose not meet the requirements for exercise evaluation. Starting from the relationship between submarine motion and sonar detection capability in actual combat, the composite function of submarine motion equation and sonar mechanism equation based on the engagement process is constructed, an acoustic perception interaction mechanism equation is established according to the relationship between them, and then the case verification is made with the navigation test data. The behavior mechanism equation reveals the law of sonar detection ability changing with submarine attitude, space position, speed and other motion variables, which provides the basis for obtaining and utilizing the detection advantages by changing submarine motion state in actual combat, and is conducive to obtain the combat opportunity for the game between friend and foe in the stage of search and perception. Key

Key words

sonardetectionability / behaviormechanismequation / operationalapplication / submarineoperationaltest

Cite this article

Download Citations
ZHANG Dongjun,LI Xiao,MI Yang. Behavior Mechanism Equation of Submarine Acoustic Perception Based on Engagement Process. Acta Armamentarii. 2020, 41(5): 958-966 https://doi.org/10.3969/j.issn.1000-1093.2020.05.015

References



[1]李嶷,陈新华,郑恩明,等.低信噪比条件下多节点声呐目标跟踪算法[J].应用声学,2019,38(3):434-439.
LI N, CHEN X H, ZHENG E M, et al. Muti-node sonar target tracking algorithm with low SNR[J].Journal of Applied Acoustics, 2019.38(3):434-439. (in Chinese)
[2]李娜. 浅海多垂直阵舰船目标探测技术研究[D].哈尔滨:哈尔滨工程大学,2019.
LI N. Research on target detection technology of multiple vertical array ships in shallow sea[D].Harbin: Harbin Engineering University, 2019. (in Chinese)
[3]ANITHAU, MALARKKAN S. Underwater object identification and recognition with sonar images using soft computing techniques[J]. Indian Journalof Geo Marine Sciences, 2018, 47(3): 665- 673.
[4]MARYAMR, ABDULLAH F R, RICHARD J K. Automatic seagrass disturbance pattern identification on sonar images[J]. IEEE Journal of Oceanic Engineering, 2018, 99: 1-10.
[5]张永峰, 李志伟. 声呐探测对潜艇鱼雷武器系统发现概率的影响[J]. 水下无人系统学报, 2017,25(4):359-364.
ZHANG Y F, LI Z W. Influence of sonar detection on detection probability of submarine torpedo weapon system[J].Journal of Unmanned Undersea Systems, 2017,25(4):359-364. (in Chinese)
[6]初磊, 王宇航, 郑付兴. 探测信息不完整情况下声自导鱼雷作战使用研究[J]. 舰船电子工程, 2018,38(2):105-108.
CHU L, WANG Y H, ZHENG F X. Influence of sonar detection on detection probability of submarine torpedo weapon system[J]. Ship Electronic Engineering,2018,38(2):105-108. (in Chinese)
[7]邓新文, 朱文振, 谢勇. 潜艇转向旋回防御主动声自导鱼雷的战术意义与作战运用[J]. 水下无人系统学报, 2019,27(1):65-70.
DENG X W, ZHU W Z, XIE Y. Tactical analysis and operational application of submarine steering cycle to defense active acoustic homing torpedo[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 65-70. (in Chinese)
[8]王科俊. 海洋运动体控制原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2007:215-217.
WANG K J. Control principle of marine motor[M]. Harbin: Harbin Engineering University Press,2007:215-217. (in Chinese)
[9]田坦. 声呐技术[M]. 哈尔滨:哈尔滨工程大学出版社,2010: 17-20.
TIAN T. Sonar technology[M]. Harbin: Harbin Engineering University Press, 2010: 17-20. (in Chinese)

[10]高学强, 杨日杰. 潜艇辐射噪声声源级经验公式修正[J]. 声学与电子工程, 2007(3):17-18,21.
GAO X Q, YANG R J. Sonar source level revised empirical formula of submarine radiated noise[J]. Acoustics and Electronics Engineering,2007(3):17-18,21. (in Chinese)
[11]施引, 朱石坚, 何琳. 船舶动力机械噪声及其控制[M]. 北京: 国防工业出版社, 1990: 39-41.
SHI Y, ZHU S J, HE L.Marine power machinery noise and control[M]. Beijing: National Defense Industry Press, 1990: 39-41. (in Chinese)
[12]冯亮,刘宝柱,刘明. 潜艇流噪声与流激噪声有限元仿真建模研究[J].声学与电子工程, 2019(3):20-23.
FENG L, LIU B Z, LIU M. Finite element modeling of submarine flow noise[J]. Acoustics and Electronics Engineering, 2019(3): 20-23. (in Chinese)
[13]林超, 郭亦平, 徐雪峰. 潜艇低噪声操舵二自由度控制策略研究[J]. 声学与电子工程, 2018(1):45-51.
LIN C, GUO Y P, XU X F. Two freedom degrees control strategy research for submarine low noise steering[J]. Acoustics and Electronics Engineering, 2018(1):45-51. (in Chinese)
[14]李环,刘聪尉, 吴方良, 等.水动力噪声计算方法综述[J]. 中国舰船研究,2016,11(2):72-89.
LI H, LIU C W, WU F L, et al. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research,2016,11(2):72-89. (in Chinese)
[15]汪 德昭, 尚尔昌. 水声学[M]. 北京: 科学出版社, 2013:165- 260.
WANG D Z, SHANG E C. Hydroacoustics[M]. Beijing: Science Press, 2013:165-260. (in Chinese)





第41卷第5期2020年5月
兵工学报ACTA ARMAMENTARII
Vol.41No.5May2020

677

Accesses

0

Citation

Detail

Sections
Recommended

/