Control of Static Walking Gait of Load Carrying Quadruped Walking Vehicle Based on Virtual Components

TAN Yongying;CHAO Zhiqiang;JIN Yi;WANG Fei

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (12) : 2570-2579. DOI: 10.3969/j.issn.1000-1093.2019.12.023
Paper

Control of Static Walking Gait of Load Carrying Quadruped Walking Vehicle Based on Virtual Components

  • TAN Yongying1, CHAO Zhiqiang1, JIN Yi1, WANG Fei2
Author information +
History +

Abstract

The traditional static gait control method based on inverse kinematics or inverse dynamics is liable to produce a large impact between the feet and the ground, which causes a large tracking error of vehicle body trajectory. A virtual-components-based static gait control method is proposed to achieve the static gait compliance of load-carrying quadruped walking vehicle. The proposed method is divided into two parts: vehicle body motion control and swinging leg control. The virtual spring damper elements are added to the vehicle body's and swing leg's degrees of freedom, respectively, so as to convert the control of vehicle body and the swing leg to the control of virtual forces. And the sequential quadratic programming method is used to assign the virtual forces of vehicle body to the supporting legs. Based on the Jacobian matrix of each leg, the joint torques of supporting legs and swing leg are obtained. A state machine of vehicle’s static gait is designed. MATLAB and ADAMS are used to establish the simulation models for the quadruped walking vehicle, and the co-simulations are carried out for the quadruped walking vehicle. The simulated results show thatthe virtual-components-based control method enables the vehicle to walk on rough terrain in a stable gait.The vehicle is able to adapt to the change of terrain, and a impact between the feet and the ground is reduced by using the proposed control method.Key

Key words

quadrupedwalkingvehicle / loadcarrying / staticgait / walkingcontrol / virtualcomponent

Cite this article

Download Citations
TAN Yongying, CHAO Zhiqiang, JIN Yi, WANG Fei. Control of Static Walking Gait of Load Carrying Quadruped Walking Vehicle Based on Virtual Components. Acta Armamentarii. 2019, 40(12): 2570-2579 https://doi.org/10.3969/j.issn.1000-1093.2019.12.023

References



[1]RAIBERTM H. Trotting, pacing and bounding by aquadruped robot[J]. Journal of Biomechanics, 1990, 23(S1): 79-98.
[2]丁良宏. BigDog四足机器人关键技术分析[J]. 机械工程学报, 2015, 51(7):1-23.
DING L H. Key technology analysis of BigDog quadruped robot[J]. Journal of Mechanical Engineering, 2015, 51(7):1-23. (in Chinese)
[3]HU N, LI S Y, GAO F. Multi-objective hierarchical optimal control for quadruped rescue robot[J]. International Journal of Control Automation & Systems, 2018, 16(1):1-12.
[4]MCGHEE R B, FRANKA A. On the stability properties of quadruped creeping gaits[J]. Mathematical Biosciences,1968,3(1):331-351.
[5]SONG S M,WALDRON K J. An analytical approach for gait study and its applications on wave gaits[J]. The International Journal of Robotics Research, 1987, 6(2):60-71.
[6]韩宝玲, 赵锐, 罗庆生, 等. 基于粒子群算法的四足机器人静步态优化方法[J]. 北京理工大学学报, 2017, 37(5):461-465.
HAN B L, ZHAO R, LUO Q S, et al. Static gait optimization method for quadruped robot based on particle swarm optimization algorithm[J]. Transactions of Beijing Institute of Technology, 2017, 37(5): 461-465. (in Chinese)
[7]KOLTER J Z, RODGERS M P, NG A Y. A control architecture for quadruped locomotion over rough terrain[C]∥Proceedings of IEEE International Conference on Robotics and Automation. California,CA,US: IEEE, 2008: 811-818.
[8]KOLTER J Z, NG A Y. The Stanford LittleDog: a learning and rapid replanning approach to quadruped locomotion[J]. International Journal of Robotics Research, 2011, 30(2): 150-174.
[9]KALAKRISHNANM, BUCHLI J, PASTOR P, et al. Learning, planning, and control for quadruped locomotion over challenging terrain[J]. The International Journal of Robotic Research, 2011, 30(2): 236-258.
[10]WINKERA W, MASTALLI C, HAVOUTIS I, et al. Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain[C]∥Proceedings of IEEE International Conference on Robotics and Automation. Seattle,WA, US: IEEE, 2015: 5148-5154.
[11]WINKER A W, MASTALLI C, BAZEILLE S, et al. Path planning with force-based foothold adaption and virtual model control for torque controlled quadruped robots[C]∥Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ, US: IEEE, 2014: 6476-6482.
[12]WANG P F, LI M T, SUN L N. Body posture control of wheeled foot quadruped robot based on virtual suspension model[C]∥Proceedings of the 1st International Conference on Intelligent Robotics and Applications: Part I. Berlin,Germany: Springer, 2008: 834-843.
[13]PRATT J, CHEW C M, TORRES A, et al. Virtual model


control:an intuitive approach for bipedal locomotion[J]. International Journal of Robotics Research, 2001, 20(2): 129-143.
[14]ZHANG G T, RONG X W, CHAI H, et al. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control[J]. Advanced Robotics, 2016, 30(4): 1-14.
[15]TORRES A. Virtual model control of a hexapod walking robot[D]. Boston, MA, US: MIT, 1996.
[16]CRAIGJ J. Introduction to robotics: mechanics and control[M]. Boston,MA, US: Addison-Wesley Publishing Company, 1986: 106-128.
[17]PRATT J. Virtual model control of a biped walking robot[D]. Boston,MA,US: MIT, 1995.
[18]张云, 郭振威, 陈迪剑,等. 基于Kimura振荡器和虚拟模型的气动肌肉四足机器人步态控制[J]. 兵工学报, 2018, 39(7):1411-1418.
ZHANG Y, GUO Z W, CHEN D J,et al. Gait control of quadruped robot driven by pneumatic muscle based on Kimura oscillator and virtual model[J]. Acta Armamentarii, 2018, 39(7): 1411-1418. (in Chinese)
[19]杜明芳,王军政,李多杨,等.基于语义树Markov随机场模型的地面机器人多尺度道路感知[J].兵工学报,2016,37(3):512-517.
DU MF,WANG J Z,LI D Y,et al.Ground robot multi-scale road perception basedon semantic tree MRF model[J].ActaArmamentarii,2016,37(3):512-517.(inChinese)

[20]刘斌, 荣学文, 柴汇. 基于虚拟模型控制的四足机器人缓冲策略[J]. 机器人, 2016, 38(6): 659-669.
LIU B, RONG X W, CHAI H. A buffering strategy for quadrupedal robots based on virtual model control[J]. Robot, 2016,38(6):659-669. (in Chinese)
[21]张国腾, 荣学文, 李贻斌, 等.基于虚拟模型的四足机器人对角小跑步态控制方法[J]. 机器人, 2016, 38(1): 65-74.
ZHANG G T, RONG X W, LI Y B, et al. Control of quadrupedal trotting based on virtual model[J]. Robot, 2016, 38(1): 65-74.(in Chinese)
[22]FOCCHI M, PRETE A, HAVOUTIS I, et al. High-slope terrain locomotion for torque-controlled quadruped robots[J]. Autonomous Robots, 2017, 41(1): 259-272.
[23]ACEITUNO-CABEZAS B, MASTALLI C, DAI H, et al. Simultaneous contact, gait and motion planning for robust multi-legged locomotion via mixed-integer convex optimization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1-8.
[24]ZHANG S S, RONG X W, LI Y B, et al. A composite COG trajectory planning method for the quadruped robot walking on rough terrain[J]. International Journal of Control and Automation, 2015, 8(9): 101-118.
[25]PONGASD, MISTRY M, SCHAAL S. A robust quadruped walking gait for traversing rough terrain[C]∥Proceedings of IEEE International Conference on Robotics and Automation. Roma,Italy: IEEE, 2007: 1474-1479.






第40卷
第12期2019年12月兵工学报ACTA
ARMAMENTARIIVol.40No.12Dec.2019

382

Accesses

0

Citation

Detail

Sections
Recommended

/