Internal Defect Detection of Metal Three-dimensional Multi-layer Lattice Structure Based on Faster R-CNN

ZHANG Yuyan;LI Yongbao;WEN Yintang;ZHANG Zhiwei

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (11) : 2329-2335. DOI: 10.3969/j.issn.1000-1093.2019.11.018
Paper

Internal Defect Detection of Metal Three-dimensional Multi-layer Lattice Structure Based on Faster R-CNN

  • ZHANG Yuyan1,2, LI Yongbao1,2, WEN Yintang1,2, ZHANG Zhiwei1,2
Author information +
History +

Abstract

The cracks, incomplete fusion, faults and other defects may exist in the metal three-dimensional lattice structure prepared by additive manufacturing technology, which lead to the decline of structure-functional performance of metal lattice structure. A Faster R-CNN-based internal defect detection method is proposed for metal three-dimensional multi-layer lattice structure. A feature extraction network is designed on the basis of the Faster R-CNN network architecture. It makes the defects in the obtained gray-scale image and the CT scanning image be detected and positioned quickly, accurately and intelligently. The experimental results show that the recognition rate of the typical internal defects of metal three-dimensional multi-layer lattice structure sample is 99.5%. Key

Key words

metallatticestructure / defectdetection / non-destructivetesting / CTscanningimage / FasterR-convolutionalneuralnetwork

Cite this article

Download Citations
ZHANG Yuyan, LI Yongbao, WEN Yintang, ZHANG Zhiwei. Internal Defect Detection of Metal Three-dimensional Multi-layer Lattice Structure Based on Faster R-CNN. Acta Armamentarii. 2019, 40(11): 2329-2335 https://doi.org/10.3969/j.issn.1000-1093.2019.11.018

References



[1]赵冰, 李志强, 侯红亮, 等. 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45(8): 2189-2200.
ZHAO B, LI Z Q, HOU H L, et al. Research progress on fabrication methods of metal three dimensional lattice structure[J]. Rare Metal Materials & Engineering, 2016, 45(8): 2189-2200. (in Chinese)
[2]MINESR A W, TSOPANOS S, SHEN Y, et al. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores[J]. International Journal of Impact Engineering, 2013, 60(10):120-132.
[3]MASKERY I, HUSSEY A, PANESAR A, et al. An investigation into reinforced and functionally graded lattice structures[J]. Journal of Cellular Plastics, 2017, 53(2): 151-165.
[4]LIU Y J, LI S J, WANG H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting[J]. Acta Materialia, 2016, 113:56-67.
[5]HORNT J, HARRYSSON O L A, MARCELLIN-LITTLE D J, et al.Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting [J]. Additive Manufacturing, 2014, 1/2/3/4:2-11.
[6]TANIGUCHI N, FUJIBAYASHI S, TAKEMOTO M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo, experiment[J]. Materials Science & Engineering C:Materials for Biological Applications, 2016, 59:690-701.
[7]LIU F, ZHANG D Z, ZHANG P, et al. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting[J]. Materials, 2018, 11(3):374.
[8]WARMUTH F, OSMANLIC F, ADLER L, et al. Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting[J]. Smart Materials & Structures, 2017, 26(2):025013.
[9]USHIJIMAK, NAGAKURA Y, YOSHIMURA A. Estimation of mechanical properties of micro-lattice structure manufactured by selective laser metal melting[C]∥Proceedings of Mechanical Engineering Congress. Japan: The Japan Society of Mechanical Engineers, 2017.

[10]MASKERYI, ABOULKHAIR N T, AREMU A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J]. Materials Science & Engineering A, 2016, 670:264-274.
[11]VAN H B, APERS Y, LIETAERT K, et al. Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting[J]. Acta Biomaterialia, 2016, 47:193-202.
[12]MERCELISP, KRUTH J. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2013, 12(5): 254-265.
[13]郑世才. 我国射线检测技术近年的发展[J]. 无损检测, 2004, 26(4): 163-167.
ZHENG S C. An overview of the latest advancement of radiology in China[J]. Nondestructive Testing, 2004, 26(4): 163-167. (in Chinese)
[14]敬人可, 李建增, 周海林. 超声无损检测技术的研究进展[J]. 国外电子测量技术, 2012, 31(7): 28-30.
JING R K, LI J Z, ZHOU H L. Research progress of ultrasonic NDT technology[J]. Foreign Electronic Measurement Technology, 2012, 31(7): 28-30. (in Chinese)
[15]郭健, 张丹, 马国义, 等. 无损检测(NDT)——磁粉检测(MT)技术[J]. 工程与试验, 2011, 51(3): 55-58.
GUO J, ZHANG D, MA G Y, et al. Nondestructive testing-magnetic particle testing technology[J]. Engineering & Test, 2011, 51(3): 55-58. (in Chinese)
[16]刘 晴岩. 液体渗透检测的可靠性[J]. 无损检测, 2002, 24(9):381-383.
LIU Q Y. Reliability of liquid penetrant inspection[J]. Nondestructive Testing, 2002, 24(9): 381-383. (in Chinese)
[17]GARCA-MARTNJ, GMEZ-GIL J, VZQUEZ-SNCHEZ E. Non-destructive techniques based on eddy current testing[J]. Sensors, 2011, 11(3): 2525.
[18]HINTON G E. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[19]KRIZHEVSKYA, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]∥Proceedings of International Conference on Neural Information Processing Systems. Lake Tahoe, NV, US:Curran Associates Inc.,2012:1097-1105.
[20]ZEILERM D, FERGUS R. Visualizing and understanding con-volutionalnetworks[C]∥Proceedings of European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014: 818-833.
[21]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA,US: IEEE, 2015: 1-9.
[22]YAN Z, ZHANG H, PIRAMUTHU R, et al. HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition[C]∥Proceedings ofIEEE International Conference on Computer Vision.Santiago, Chile: IEEE Computer Society, 2015: 1534-1541.
[23]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Lake Tahoe, NV, US: IEEE Computer Society, 2016: 770-778.
[24]SANDE K E A V D, UIJLINGS J R R, GEVERS T, et al. Segmentation as selective search for object recognition[C]∥Proceedings of International Conference on Computer Vision. Barcelona, Spain: IEEE Computer Society, 2011:1879-1886.
[25]GIRSHICK R. Fast R-CNN[C]∥Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Computer Society, 2015:1440-1448.
[26]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):91-99.
[27]XIANG X Z, NING L, GUO X L, et al. Engineering vehicles detection based on modified faster R-CNN for power grid surveillance[J]. Sensors, 2018, 18(7):2258.
[28]ZHANG Q X, LIN G H, ZHANG Y M, et al. Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images[J]. Procedia Engineering, 2018, 211:441-446.





第40卷
第11期2019年11月兵工学报ACTA
ARMAMENTARIIVol.40No.11Nov.2019

311

Accesses

0

Citation

Detail

Sections
Recommended

/