Simulation Analysis of Distribution of Fragments of Hypervelocity 93W Projectile Impacting on a Steel Plate Target

MA Kun;LI Mingrui;CHEN Chunlin;FENG Na;ZHAO Nan;KE Ming;ZHOU Gang

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (10) : 2022-2031. DOI: 10.3969/j.issn.1000-1093.2019.10.007
Paper

Simulation Analysis of Distribution of Fragments of Hypervelocity 93W Projectile Impacting on a Steel Plate Target

  • MA Kun1, LI Mingrui1, CHEN Chunlin1, FENG Na1, ZHAO Nan1, KE Ming1,2, ZHOU Gang1
Author information +
History +

Abstract

In order to study the distribution of fragments of hypervelocity 93W projectile impacting on a steel plate target, the AUTODYN software is used to do the smoothed particle hydrodynamics simulation, and the GRAY solid-liquid phase equation of state is added as a user subroutine in the software. The hypervelocity impact process under the conditions of different impact velocities and body diameters was simulated, and the simulated results were verified by the experimental results. The distribution characteristics of mass, quantity, momentum, temperature and other parameters of the fragments were obtained based on the breadth-first search algorithm for fragments recognition. The study results show that the quantity and quality of fragments are mainly concentrated at the front part of fragment group, are less at its middle part, and are increased at its tail part. The big mass fragments are mainly concentrated at the front and tail parts of fragment group, and their lateral velocities are low. The front part of the fragment group has higher quality, and higher axial and lateral momenta, which represents the damage power of fragment group. High temperature fragments mainly distribute in the middle to front part of the fragments group, and there are many low temperature fragments at the front and tail part of the fragment group. The resultant velocity of high temperature fragments is above the medium velocity of all fragments, and the fragments with high resultant velocity are distributed in all temperature sections. A fragment group with more fragments and higher total mass can be produced by increasing the diameter of projectile than increasing the impact velocity. The change of diameter of projectile or impact velocity has a more significant effect on the front part of fragment group, so the damage power of fragment group can be effectively improved. Key

Key words

tungstehalloyprojectile / hypervelocityimpact / distributionoffragments / smoothedparticlehydrodynamics / GRAYequationofstate

Cite this article

Download Citations
MA Kun, LI Mingrui, CHEN Chunlin, FENG Na, ZHAO Nan, KE Ming, ZHOU Gang. Simulation Analysis of Distribution of Fragments of Hypervelocity 93W Projectile Impacting on a Steel Plate Target. Acta Armamentarii. 2019, 40(10): 2022-2031 https://doi.org/10.3969/j.issn.1000-1093.2019.10.007

References



[1]AKAHOSHIY, KAJI M, HATA H. Measurement of mass, spray angle and velocity distribution of fragment cloud[J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10):845-853.
[2]HIGASHIDE M, KOURA T, AKAHOSHI Y, et al. Debris cloud distributions at oblique impacts[J]. International Journal of Impact Engineering, 2008, 35(12): 1573-1577.
[3]宋强, 黄洁, 文雪忠,等. 10ns级序列激光阴影成像仪在超高速瞬态测量中的应用[C]∥中国力学大会-2017暨庆祝中国力学学会成立60周年大会.北京:中国力学学会, 2017.
SONG Q, HUANG J, WEN X Z, et al. Application of 10ns series laser shadow imager in ultra-high speed transient measurement[C]∥Proceedings of China Mechanics Conference 2017 and the 60th Anniversary of the Chinese Society of Theoretical and Applied Mechanics . Beijing: the Chinese Society of Theoretical and Applied Mechanics, 2017.(in Chinese)
[4]ZHANG Q, CHEN Y, HUANG F, et al. Experimental study on expansion characteristics of debris clouds produced by oblique hypervelocity impact of LY12 aluminum projectiles with thin LY12 aluminum plates[J]. International Journal of Impact Engineering, 2008, 35(12): 1884-1891.
[5]PEDERSEN B, BLESS S. Behind-armor debris from the impact of hypervelocity tungsten penetrators[J]. International Journal ofImpact Engineering, 2006, 33(1): 605-614.
[6]NEBOLSINE P E, LO E Y, FERSUGON R D. Tungsten pellet fragment field characterization[J]. International Journal of Impact Engineering, 1995, 17(4): 583-593.
[7]BEISSEL S R, GERLACH C A, JOHNSON G R. A quantitative analysis of computed hypervelocity debris clouds[J]. International Journal of Impact Engineering, 2008, 35(12): 1410-1418.
[8]HUANG J, MA Z X, REN L S, et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Journal of Impact Engineering, 2013, 56(1): 32-39.
[9]唐蜜, 刘仓理, 李平, 等. 超高速撞击产生碎片云相分布数值模拟[J]. 强激光与粒子束,2012, 24(9): 2203-2206.
TANG M, LIU C L , LI P, et al. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2012, 24(9): 2203-2206. (in Chinese)

[10]PEDERSENB, BLESS S. Behind-armor debris from the impact of hypervelocity tungsten penetrators[J]. International Journal of Impact Engineering, 2006, 33(1): 605-614.
[11]董士伟, 冷雪, 李宝宝, 等. 温度和相变效应对超高速碰撞数值模拟中碎片云质量特性的影响[J]. 兵器材料科学与工程, 2014, 37(6): 59-62.
DONG S W, LENG X, LI B B, et al. Effect of temperature and phase-change on mass characters of debris clouds in numerical simulation of hypervelocity impacts[J]. Ordnance Material Science and Engineering, 2014, 37(6): 59-62. (in Chinese)
[12]刘先应, 盖芳芳, 李志强, 等. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究[J]. 高压物理学报, 2016, 30(3): 249-257.
LIU X Y, GAI F F, LI Z Q, et al. Characteristic parameters of debris cloud produced by hypervelocity impact of conical projectiles on spacecraft shield[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 249-257. (in Chinese)
[13]邸德宁, 陈小伟, 文肯, 等. 超高速碰撞产生的碎片云研究进展[J]. 兵工学报, 2018, 39(10): 2016-2047.
DI D N, CHEN X W, WEN K, et al. A review on the study of debris cloud produced by normal hypervelocity impact upon a thin plate[J]. Acta Armamentarii, 2018, 39(10): 2016-2047. (in Chinese)
[14]ROYCEE B. GRAY, a three-phase equation of state for metals: UCRL-51121[R]. Livermore, CA, US: Lawrence Livermore National Laboratory, University of California, 1971.
[15]CARRASCO C, MELCHOR-LUCERO O, OSEGUEDA R, et al. Damage-potential comparison of spherical and cylindrical projectiles impacting on a system of bumper plates[J]. International Journal of Impact Engineering, 2006, 33(1): 143-157.
[16]华劲松, 经福谦, 董玉斌, 等. 钨合金的高压本构研究[J]. 物理学报, 2003, 52(8): 2005-2009.
HUA J S, JING F Q, DONG Y B, et al. Constitutive study for tungsten alloy under high pressure[J]. Acta Physica Sinica, 2003, 52(8): 2005-2009. (in Chinese)
[17]兰彬, 文鹤鸣. 钨合金长杆弹侵彻半无限钢靶的数值模拟及分析[J]. 高压物理学报, 2008, 22(3): 245-252.
LAN B, WEN H M. Numerical simulation and analysis of the penetration of tungsten-alloy long rod into semi-infinite armor steel targets[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 245-252. (in Chinese)
[18]Group GMX-6. Selected Hugoniots:LA-4167-MS[R]. Los Alamos,NM, US:Los Alamos National Laboratory, 1969.
[19]于文静. 导管架海洋平台钢结构在爆炸和火灾作用下的力学性能研究[D]. 上海:上海交通大学, 2012.
YU W J. Study on mechanical properties of steel jacket offshore platform in blast and fire[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
[20]LIANG S C, LI Y, CHEN H, et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set[J]. International Journal of Impact Engineering, 2013, 56(1): 27-31.





第40卷
第10期2019年10月兵工学报ACTA
ARMAMENTARIIVol.40No.10Oct.2019

536

Accesses

0

Citation

Detail

Sections
Recommended

/