Research Progress of Large-diameter Split Hopkinson Bar Experimental Technique

GUO Ruiqi;REN Huiqi;ZHANG Lei;LONG Zhilin;WU Xiangyun;XU Xiangyun;LI Zebin;HUANG Kui

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (7) : 1518-1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023
Comprehensive Review

Research Progress of Large-diameter Split Hopkinson Bar Experimental Technique

  • GUO Ruiqi1,2, REN Huiqi2, ZHANG Lei2, LONG Zhilin1, WU Xiangyun2, XU Xiangyun2, LI Zebin2, HUANG Kui2
Author information +
History +

Abstract

The large-diameter split Hopkinson bar (SHB) technique is an important means for studying the dynamic mechanical properties of concrete and other heterogeneous materials, but the basic assumptions of traditional split Hopkinson pressure bar may not always hold with the increase in SHB diameter, which has brought new challenges to experimental technique, data processing and analysis of experimental results. The brief development history of large-diameter split Hopkinson bar technique is reviewed. Then the wave dispersion effect, stress uniformity in specimen, non-parallel end-faces of specimen, and transverse inertia effect due to the increase in SHB diameter, as well as the corresponding solutions are summarized. The research direction and hotspots of large-diameter SHB experimental technique are discussed. Key

Key words

large-diametersplitHopkinsonbar / wavedispersioneffect / stressuniformity / dynamicmechanicalproperty

Cite this article

Download Citations
GUO Ruiqi, REN Huiqi, ZHANG Lei, LONG Zhilin, WU Xiangyun, XU Xiangyun, LI Zebin, HUANG Kui. Research Progress of Large-diameter Split Hopkinson Bar Experimental Technique. Acta Armamentarii. 2019, 40(7): 1518-1536 https://doi.org/10.3969/j.issn.1000-1093.2019.07.023

References



[1]HOPKINSONJ. On the rupture of an iron wire by a blow[C]∥Proceedings of the Literary and Philosophical Society of Manchester. Manchester, UK: The Manchester Literary and Philosophical Society, 1872: 40-45.
[2]HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1914, 213: 437-456.
[3]TAYLOR G I. The testing of materials at high rates of loading[J]. Journal of the Institution of Civil Engineers, 1946, 26(8): 486-519.
[4]VOLTERRAE. Alcuni risultati di prove dinamiche suimateriali[J]. Rivista Nuovo Cimento, 1948, 4: 1-28.(in Italian)
[5]DAVIES R M. A critical study of the Hopkinson pressure bar[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 240(821): 375-457.
[6]KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society Section B, 1949, 62(11): 676-700.
[7]王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017.
WANG L L,HU S S,YANG L M,et al. Kinetics of materials[M]. Hefei: Press of University of Science and Technology of China, 2017. (in Chinese)
[8]CHEN W W, SONG B. Dynamic characterization of soft materials[M]∥SHUKLA A, RAVICHANDRAN G, RAJAPAKSE Y D S. Dynamic failure of materials and structures.New York, NY, US: Springer Science+Business Media, 2009:1-28.
[9]TANG T X, MALVERN L E, JENKINS D A. Rate effects in uniaxial dynamic compression of concrete[J]. Journal of Engineering Mechanics, 1992, 118(1): 108-124.

[10]LIX B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1):21-39.
[11]TANG T X, MALVERN L E, JENKINS D A. Dynamic compressive testing of concrete and mortar[C]∥ Engineering Mechanics in Civil Engineering. US: ASCE, 1984: 663-666.
[12]MALVERN L E, JENKINS D A, TANG T, et al. Dynamic compressive testing of concrete[C]∥ Proceedings of the 2nd Symposium on the Interaction of Non-Nuclear Munitions with Structures. Panama City Beach, FL, US: Air Force Engineering and Services Laboratory, 1985: 194-199.
[13]MALVERN L E, ROSS C A. Dynamic response of concrete and concrete structures[R]. Gainesville, FL, US: Deptment of Engineering Sciences, Florida University, 1986.
[14]MALVERN L E, JENKINS D A, JEROME E, et al. Dispersion correction for split-Hopkinson pressure bar data[R]. Gainesville, FL, US:Deptment of Engineering Sciences, Florida University, 1988.
[15]MALVERNL E, JENKINS D A. Dynamic testing of laterally confined concrete[R]. Pasadena, CA,US: California Institute of Technology, 1990.
[16]胡时胜, 刘剑飞, 王梧. 硬质聚氨酯泡沫塑料本构关系的研究[J]. 力学学报, 1998, 30(2):151-156.
HU S S, LIU J F, WANG W. Study of the constitutive relationship of rigid polyurethane foam[J]. Acta Mechanica Sinica, 1998, 30(2):151-156. (in Chinese)
[17]薛志刚, 胡时胜. 水泥砂浆在围压下的动态力学性能[J]. 工程力学, 2008, 25(12):184-188.
XUE Z G, HU S S. Dynamic behavior of cement mortar under active confinement[J]. Engineering Mechanics, 2008, 25(12):184-188. (in Chinese)
[18]刘孝敏, 胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000, 20(2):110-114.
LIU X M, HU S S. Wave propagation characteristics in cone bars used for variable cross-section SHPB[J]. Explosion and Shock Waves, 2000, 20(2):110-114. (in Chinese)
[19]胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5):115-118.
HU S S, WANG D R, LIU J F. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics, 2001, 18(5):115-118. (in Chinese)
[20]陈德兴, 胡时胜, 张守保, 等. 大尺寸Hopkinson压杆及其应用[J]. 实验力学, 2005,20(3): 398-402.
CHEN D X, HU S S, ZHANG S B, et al. Large dimension Hopkinson pressure bar and its application[J]. Journal of Experimental Mechanics, 2005,20(3): 398-402. (in Chinese)
[21]王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005,25(1): 17-25.
WANG L L, WANG Y G. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005,25(1): 17-25. (in Chinese)
[22]POCHHAMMERL.ber Fortpflanzungsgeschwindig-keiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiszylinder[J]. Journal Für Die Reine Und Angewandte Mathematik, [s.n.], 1876(81): 324-336.(in German)
[23]CHREE C. The equations of an isotropic elastic solid in polar and cylindrical co-ordinates their solution and application[J]. Tran-sactionsof the Cambridge Philosophical Society, 1889, 14: 250-369.
[24]RAYLEIGH J W S. The theory of sound[M]. London, UK: Macmillan, 1896.
[25]刘孝敏, 胡时胜. 大直径SHPB弥散效应的二维数值分析[J]. 实验力学, 2000, 15(4):371-376.
LIU X M, HU S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB[J]. Journal of Experimental Mechanics, 2000, 15(4):371-376. (in Chinese)
[26]WANG Y G, WANG L L. Stress wave dispersion in large-diameter SHPB and its manifold manifestations[J]. Journal of Beijing Institute of Technology(English Edition), 2004,13(3):247-253.
[27]RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1):263-267.
[28]胡金生, 陈向欣. 提高大直径SHPB装置试验精度的方法[J]. 解放军理工大学学报(自然科学版), 2003, 4(1):71-74.
HU J S, CHEN X X. Method of enhancing experimental precision for big radial size SHPB equipment[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2003, 4(1):71-74. (in Chinese)
[29]FAIRHURST C E, HUDSON J A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics & Mining Science and Geomechanics Abstracts, 1999, 36(3):281-289.
[30]陶俊林. SHPB实验中几个问题的讨论[J]. 西南科技大学学报, 2009, 24(3):27-35.
TAO J L. Some questions need to discuss in the SHPB experiment[J]. Journal of Southwest University of Science and Technology, 2009, 24(3):27-35. (in Chinese)
[31]孟益平, 胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003, 18(1):108-112.
MENG Y P, HU S S. Some problems in the test of concrete under impact compressive loading[J]. Journal of Experimental Mechanics, 2003, 18(1):108-112. (in Chinese)
[32]ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete[C]∥ Proceeding of ASTM. US: ASTM, 1917: 364-377.
[33]LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids & Structures, 2003, 40(2):343-360.
[34]ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamiccompressive strength enhancement of concrete-like materialsbased on split Hopkinson pressure bar tests. Part I: experiments[J]. International Journal of Impact Engineering, 2009, 36(12): 1327-1334.
[35]LI Q M, LU Y B, MENG H. Further investigation on the dynamiccompressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numericalsimulations[J]. International Journal of Impact Engineering,2009, 36(12): 1335-1345.
[36]ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661.
[37]FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411.
[38]FOLLANSBEE P S, FRANTZ C. Wave propagation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials and Technology, 1983, 105(1): 61-66.
[39]GORHAM D A. A numerical method for the correction of dispersion in pressure bar signals[J]. Journal of Physics E: Scientific Instruments, 1983, 16(6): 477-479.
[40]GONG J C, MALVERN L E, JENKINS D A. Dispersion investigation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials and Technology, 1990, 112(3):309-314.
[41]宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005, 25(3):207-216.
SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves, 2005, 25(3):207-216.(in Chinese)
[42]左宇军, 唐春安, 李术才, 等. 基于大直径霍普金森压杆数值试验的非均匀介质动态破坏过程分析[J]. 岩土力学, 2011, 32(1):230-236,268.
ZUO Y J, TANG C A, LI S C, et al. Numerical analysis of dynamic failure process of inhomogeneous medium based on large diameter SHPB test[J]. Rock and Soil Mechanics, 2011, 32(1): 230-236, 268. (in Chinese)
[43]ZHU J, HU S S, WANG L L. An analysis of stress uniformity for concrete-like specimens during SHPB tests[J]. International Journal of Impact Engineering, 2009, 36(1):61-72.
[44]CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-Hopkinson-bar tests on rock under confining pressure[J]. Experimental Mechanics, 1972, 12(11): 508-513.
[45]GUPTA R B, NILSSON L. Elastic impact between a finite conical rod and a long cylindrical rod[J]. Journal of Sound & Vibration, 1978, 60(4):555-563.
[46]李夕兵, 赖海辉, 古德生. 不同加载波形下矿岩破碎的耗能规律[J]. 中国有色金属学报, 1992,2(4): 10-14.
LI X B, LAI H H, GU D S. The energy consumption regularity of ore rock crush under different loading waveform[J]. The Chinese Journal of Nonferrous Metals, 1992,2(4): 10-14. (in Chinese)
[47]李夕兵, 古德生, 赖海辉. 冲击载荷下岩石动态应力-应变全图测试中的合理加载波形[J]. 爆炸与冲击, 1993, 13(2): 125-130.
LI X B, GU D S, LAI H H. On the reasonable loading stress waveforms determined by dynamic stress-strain curves of rocks by SHPB[J]. Explosion and Shock Waves, 1993, 13(2):125-130. (in Chinese)
[48]李夕兵, 刘德顺, 古德生. 消除岩石动态实验曲线振荡的有效途径[J]. 中南工业大学学报, 1995, 26(4):457-460.
LI X B, LIU D S, GU D S. Effective method of eliminating the oscillation of rock dynamic stress-strain-strain rate curves[J]. Journal of Central South University of Technology, 1995, 26(4): 457-460. (in Chinese)
[49]LOK T S, LI X B, LIU D, et al. Testing and response of large diameter brittle materials subjected to high strain rate[J]. Journal of Materials in Civil Engineering, 2002, 14(3):262-269.
[50]洪亮, 金志仁, 邓宗伟. 花岗岩在SHPB冲击破坏实验中最低加载应变率的杆径效应[J].爆炸与冲击, 2014, 34(3): 328-333.
HONG L, JIN Z R, DENG Z W. Bar diameter effect of minimum loading strain rate in granite impacting tests by SHPB Technology[J]. Explosion and Shock Waves, 2014, 34(3): 328-333. (in Chinese)
[51]ZHOU Z L, HONG L, LI Q Y, et al. Calibration of split Hopkinson pressure bar system with special shape striker[J]. Journal of Central South University of Technology, 2011, 18(4):1139-1143.
[52]胡时胜,王礼立,宋力,等. Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6):641-657.
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6): 641-657. (in Chinese)
[53]李为民, 许金余. 大直径分离式霍普金森压杆试验中的波形整形技术研究[J]. 兵工学报, 2009, 30(3):350-355.
LI W M, XU J Y. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii, 2009, 30(3):350-355. (in Chinese)
[54]LEE O S, KIM S H, HAN Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique[J]. Journal of Experimental Mechanics, 2006, 21(1):51-60.
[55]李为民, 许金余, 沈刘军, 等.100 mm SHPB应力均匀及恒应变率加载试验技术研究[J]. 振动与冲击, 2008, 27(2):129-132.
LI W M, XU J Y, SHEN L J, et al. Study on 100-mm-diameter SHPB experimental techniques of dynamic stress equilibrium and nearly constant strain rate loading[J]. Journal of Vibration and Shock, 2008, 27(2):129-132. (in Chinese)
[56]袁璞, 马芹永, 张海东. 轻质泡沫混凝土SHPB试验与分析[J]. 振动与冲击, 2014, 33(17):116-119.
YUAN P, MA Q Y, ZHANG H D. SHPB tests for light weight foam concrete[J]. Journal of Vibration and Shock, 2014, 33(17): 116-119. (in Chinese)
[57]YUAN P, MA Q, MA D D. Stress uniformity analyses on nonparallel end-surface rock specimen during loading process in SHPB tests[J/OL]. Advances in Civil Engineering, 2018. [2018-09-01]. https:∥doi.org/10.1155/2018/5406931.
[58]宋力, 胡时胜. SHPB实验中的端面凹陷修正[J].爆炸与冲击,2010,30(2):203-208.
SONG L, HU S S. Correction of end-face indentation in SHPB test[J]. Explosion and Shock Waves, 2010, 30(2): 203-208. (in Chinese)
[59]DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics & Physics of Solids, 1963, 11(3): 155-179.
[60]GORHAM D A. Specimen inertia in high strain-rate compression[J]. Journal of Physics D: Applied Physics, 1989, 22(12): 1888-1893.
[61]LU Y B, LI Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing[J]. International Journal of Protective Structures, 2011, 2(1): 127-138.
[62]方秦, 洪建, 张锦华,等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14.
FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5): 1-14. (in Chinese)
[63]FOWLES R, WILLIAMS R F. Plane stress wave propagation in solids[J]. Journal of Applied Physics, 1970, 41(1): 360-363.
[64]FOWLES R. Conservation relations for spherical and cylindrical stress waves[J]. Journal of Applied Physics, 1970, 41(6): 2740-2741.
[65]COWPERTHWAITE M, WILLIAMS R F. Determination of constitutive relationships with multiple gauges in nondivergent waves [J]. Journal of Applied Physics, 1971, 42(1): 456-462.
[66]王礼立, 朱珏, 赖华伟. 冲击动力学研究中实测波信息的解读分析[J]. 高压物理学报, 2010,24(4): 279-285.
WANG L L, ZHU J, LAI H W. Understanding and interpreting of the measured wave signals in impact dynamics studies[J]. Chinese Journal of High Pressure Physics, 2010,24(4): 279-285. (in Chinese)
[67]WANG L L, HU S S, YANG L M, et al. Development of experimental methods for impact testing by combining Hopkinson pressure bar with other techniques[J]. Acta Mechanica Solida Sinica, 2014, 27(4): 331-344.
[68]张磊, 胡时胜, 梁宗宪. 利用拉氏分析研究冲击载荷下混凝土应力-应变关系[J]. 工程力学, 2005, 22(4): 163-166.
ZHANG L, HU S S, LIANG Z X. Lagrange analysis of the stress-strain relation of concrete material under impact[J]. Engineering Mechanics, 2005, 22(4): 163-166. (in Chinese)
[69]LAMBERT D E, ROSS C A. Strain rate effects on dynamic fracture and strength[J]. International Journal of Impact Engineering, 2000, 24(10):985-998.
[70]JIN X C, HOU C, FAN X L, et al. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs[J]. Scientific Reports, 2017, 7(1):15305.
[71]巫绪涛, 代仁强, 陈德兴, 等. 钢纤维混凝土动态劈裂试验的能量耗散分析[J]. 应用力学学报, 2009, 26(1): 151-154.
WU X T, DAI R Q, CHEN D X, et al. Energy dissipation analysison dynamic splitting-tensile test of steel fiber reinforced concrete[J].Chinese Journal of Applied Mechanics, 2009, 26(1):151-154. (in Chinese)
[72]胡时胜, 张磊, 武海军,等. 混凝土材料层裂强度的实验研究[J]. 工程力学, 2004, 21(4):128-132.
HU S S, ZHANG L, WU H J, et al. Experimental study on spalling strength of concrete[J]. Engineering Mechanics, 2004, 21(4): 128-132. (in Chinese)
[73]张磊, 胡时胜. 混凝土层裂强度测量的新方法[J]. 爆炸与冲击, 2006, 26(6):537-542.
ZHANG L, HU S S. A novel experimental technique to determine the spalling strength of concretes[J]. Explosion and Shock Waves, 2006, 26(6):537-542. (in Chinese)
[74]张磊, 胡时胜, 陈德兴,等. 钢纤维混凝土的层裂特征[J]. 爆炸与冲击, 2009, 29(2):119-124.
ZHANG L, HU S S, CHEN D X, et al. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion and Shock Waves, 2009, 29(2):119-124. (in Chinese)
[75]张磊, 胡时胜, 陈德兴,等. 混凝土材料的层裂特性[J]. 爆炸与冲击, 2008, 28(3):193-199.
ZHANG L, HU S S, CHEN D X, et al. Spall characteristics of concrete materials[J]. Explosion and Shock Waves, 2008, 28(3): 193-199. (in Chinese)
[76]HARDING J, WOOD E O, CAMPBELL J D . Tensile testing of materials at impact rates of strain[J]. Journal of Mechanical Engineering Science, 1960, 2(2):88-96.
[77]张凯, 陈荣刚, 张威,等. 混凝土动态直接拉伸实验技术研究[J]. 实验力学, 2014, 29(1):89-96.
ZHANG K, CHEN R G, ZHANG W, et al. Study of experimental technique for concrete dynamic direct tension[J]. Journal of Experimental Mechanics, 2014, 29(1):89-96. (in Chinese)
[78]江伟, 卢玉斌, 姜锡权,等. 砂浆-花岗岩ITZ动态直接拉伸力学性能的试验研究[J].岩石力学与工程学报, 2018, 37(8):1905-1915.
JIANG W, LU Y B, JIANG X Q, et al. Experimental study on dynamic direct tensile mechanical properties of mortar-granite ITZ[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1905-1915. (in Chinese)
[79]滕骁, 卢玉斌, 陈兴, 等. 再生混凝土动态直接拉伸的试验研究[J]. 振动与冲击, 2016, 35(9):43-51.
TENG X, LU Y B, CHEN X, et al. Tests for dynamic direct tensile of recycled aggregate concrete[J]. Journal of Vibration and Shock, 2016, 35(9):43-51. (in Chinese)
[80]段祝平, 孙琦清, 杨大光,等. 高应变率下金属动力学性能的实验与理论研究——一维杆的实验方法及其应用[J]. 力学进展, 1980(1):215-229.
DUAN Z P, SUN Q Q, YANG D G, et al. Experimental and theoretical research on the dynamic mechanics properties of metallic materials at high strain rates-experimental method and application of one dimensional rod[J]. Advances in Mechanics, 1980(1): 215-229. (in Chinese)
[81]张善元, 杨绍瑞. 弹性圆柱体中扭转波的几何弥散效应[J]. 太原理工大学学报, 1983(4):5-18.
ZHANG S Y, YANG S R. Effects of geometric dispersion of torsional waves propagating in a circular cylinder rod[J]. Journal of Taiyuan University of Technology, 1983(4):5-18. (in Chinese)
[82]BAKER W E, YEW C H. Strain-rate effects in the propagation of torsional plastic waves[J]. Journal of Applied Mechanics, 1966, 33(4): 917-923.
[83]杨桂通, 宋育兆. 固体材料在高应变率条件下的TSHB实验技术[J]. 应用数学和力学, 1985, 6(5):383-388.
YANG G T, SONG Y Z. The TSHB technique for material testing at high rates of strain[J]. Applied Mathematics and Mechanics, 1985, 6(5):383-388. (in Chinese)
[84]YU X, CHEN L, FANG Q, et al. A review of the torsional split Hopkinson bar[J/OL]. Advances in Civil Engineering, 2018. [2018-09-01]. https:∥doi.org/10.1155/2018/2719741.
[85]ALBERTINIC, MONTAGNANI M. Study of the true tensile stress-strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle[J]. Le Journal de Physique IV, 1994, 4(C8): C8-113-C8-118.
[86]ALBERTINI C, CADONI E, LABIBES K. Study of the mechanical properties of plain concrete under dynamic loading[J]. Experimental Mechanics, 1999, 39(2):137-141.
[87]ALBERTINIC, CADONI E, LABIBES K. Impact fracture process and mechanical properties of plain concrete by means of an Hopkinson bar bundle[J]. Le Journal de Physique IV, 1997, 7(C3): C3-915.
[88]CADONI E, LABIBES K, BERRA M, et al. High-strain-rate tensile behaviour of concrete[J]. Magazine of Concrete Research, 2000, 52(5): 365-370.
[89]宁建国, 周风华, 王志华, 等. 强冲击载荷下钢筋混凝土的本构关系、破坏机理与数值方法[J]. 中国科学: 技术科学, 2016, 46(4): 323-331.
NING J G, ZHOU F H, WANG Z H, et al. Constitutive model, failure mechanism and numerical method for reinforced concrete under intensive impact loading[J]. Scientia Sinica (Technologica), 2016, 46(4): 323-331. (in Chinese)
[90]陈博斐, 邱欣, 王甲, 等. 冲击压缩载荷下大尺寸混凝土力学响应的数值模拟[J]. 宁波大学学报(理工版), 2017, 30(1):73-76.
CHEN B F, QIU X, WANG J, et al. Numerical simulation on mechanical response of concrete subjected to impact compressive loading[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2017, 30(1): 73-76. (in Chinese)
[91]肖圣哲, 王腾, 陈江瑛. 冻融循环温度对陶粒混凝土动态抗压性能的影响[J].硅酸盐通报, 2018, 37(12): 3935-3938.
XIAO S Z, WANG T, CHEN J Y. Influence of freeze-thaw cycling temperature on dynamic compressive properties of ceramsite concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12):3935-3938. (in Chinese)
[92]FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rate of strain[J]. International Journal of Impact Engineering, 2008, 35(6): 425-446.
[93]刘飞, 赵凯, 王肖钧, 等. 软材料和松散材料SHPB冲击压缩实验方法研究[J]. 实验力学, 2007,22(1): 20-26.
LIU F, ZHAO K, WANG X J, et al. A study on SHPB method of soft/porous materials[J]. Journal of Experimental Mechanics, 2007,22(1): 20-26. (in Chinese)
[94]YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave[J]. International Journal of Impact Engineering, 2019, 125: 63-82.
[95]文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究[J]. 爆炸与冲击, 2019, 39(3): 42-50.
WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand[J]. Explosion and Shock Waves, 2019, 39(3): 42-50. (in Chinese)
[96]HOKKA M, BLACK J, TKALICH D, et al. Effects of strain rate and confining pressure on the compressive behavior of Kuru granite[J]. International Journal of Impact Engineering, 2016, 91:183-193.
[97]马冬冬, 马芹永, 袁璞, 等. 冻结黏土单轴与主动围压状态SHPB试验对比分析[J]. 振动与冲击, 2017, 36(19): 255-260.
MA D D, MA Q Y, YUAN P, et al. Comparison analysis and SHPB tests on artificial frozen clay in uniaxial load and confining pressure states[J]. Journal of Vibration and Shock, 2017, 36(19):255-260. (in Chinese)
[98]CANDAPPA D P, SETUNGE S, SANJAYAN J G. Stress versus strain relationship of high strength concrete under high lateral confinement[J]. Cement and Concrete Research, 1999, 29(12):1977-1982.
[99]李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7):1387-1395.
LI X B, ZHOU Z L, YE Z Y, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387-1395. (in Chinese)

[100]LIX, ZHOU Z, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(5): 739-748.
[101]张磊, 何翔, 王晓峰, 等. 混凝土恒定围压下冲击加载实验装置研制[J]. 振动与冲击, 2015, 34(22):24-27.
ZHANG L, HE X, WANG X F, et al. Development of an impact loading test device for concrete under constant confining pressure[J]. Journal of Vibration and Shock, 2015, 34(22):24-27. (in Chinese)
[102]张磊, 任新见, 郝龙. 围压下钢纤维混凝土冲击动力学性能研究[J]. 兵工学报, 2014,35(增刊2):275-280.
ZHANG L, REN X J, HAO L. Study of the impact dynamic mechanical properties of steel fiber reinforced concrete under confining pressure[J]. Acta Armamentarii, 2014,35(S2):275-280.(in Chinese)
[103]HUMMELTENBERG A, CURBACH M. Design and construction of a biaxial split-Hopkinson-Bar[J]. Betound Stahlbetonbau, 2012, 107(6): 394-400.
[104]CADONI E, ALBERTINI C. Modified Hopkinson bar technologies applied to the high strain rate rock tests[M]∥ZHOU Y X, ZHAO J. Advances in Rock Dynamics And Applications. London,UK: CRC Press, 2011: 79-104.
[105]NIE H L, SUO T, WU B B, et al. A versatile split Hopkinson pressure bar using electromagnetic loading[J]. International Journal of Impact Engineering, 2018, 116: 94-104.
[106]NIE H L, SUO T, SHI X P, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators[J]. International Journal of Impact Engineering, 2018, 122: 73-82.
[107]王浩宇, 陈震, 许金余, 等. 真三轴冲击试验中加载杆变截面段应力波的传播特性分析[J]. 矿冶工程, 2017, 37(2):11-15.
WANG H Y, CHEN Z, XU J Y, et al. Stress wave's propagation characteristics in loaded bar with variable section in true triaxial impact test[J]. Mining and Metallurgical Engineering, 2017, 37(2):11-15. (in Chinese)
[108]徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究[J]. 爆炸与冲击, 2017, 37(2): 180- 185.
XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar[J]. Explosion and Shock Waves, 2017, 37(2): 180-185. (in Chinese)
[109]徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究[J]. 振动与冲击, 2018, 37(15): 59-67.
XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings[J]. Journal of Vibration and Shock, 2018, 37(15): 59-67. (in Chinese)
[110]LIU K, ZHANG Q B, WU G, et al. Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar[J/OL]. Rock Mechanics and Rock Engineering, 2019. [2018-09-01]. https:∥doi.org/10.1007/s00603-018-1691-y.
[111]徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究[J]. 爆炸与冲击, 2019,39(7):4-11.
XU S L, SHAN J F, WANG P F, et al. Investigation on penetration performance of concrete under triaxial stress[J]. Explosion and Shock Waves, 2019,39(7):4-11. (in Chinese)
[112]RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002: 42(1): 58-64.
[113]DOROGOY A, RITTEL D, GODINGER A. Modification of the shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2015, 55(9): 1627-1639.
[114]DOROGOYA, RITTEL D, GODINGER A. A shear-tension specimen for large strain testing[J]. Experimental Mechanics, 2016, 56(3): 437-449.
[115]XU Z J, DING X Y, ZHANG W Q, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique[J]. International Journal of Impact Engineering, 2017, 101: 90-104.
[116]HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression. Part I: experiments[J]. International Journal of Solids and Structures, 2011, 48(5): 687-697.
[117]XU S L, HUANG J Y, WANG P F, et al. Investigation of rock material under combined compression and shear dynamic loading: an experimental technique[J]. International Journal of Impact Engineering, 2015, 86: 206-222.
[118]LI Z W, XU J Y, BAI E L. Static and dynamic mechanical properties of concrete after high temperature exposure[J]. Materials Science & Engineering A, 2012, 544:27-32.
[119]HUO J S, HE Y M, XIAO L P, et al. Experimental study on
dynamic behaviours of concrete after exposure to high temperatures up to 700 ℃[J]. Materials & Structures, 2013, 46(1/2):255-265.
[120]施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5):703-710.
SHI J S, XU J Y, REN W B, et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J]. Acta Armamentarii, 2014, 35(5):703-710. (in Chinese)
[121]周国才, 胡时胜, 付峥. 用于测量材料高温动态力学性能的SHPB技术[J]. 实验力学, 2010, 25(1): 9-15.
ZHOU G C, HU S S, FU Z. SHPB technique used for measuring dynamic properties of material in high temperature[J]. Journal of Experimental Mechanics, 2010, 25(1):9-15. (in Chinese)
[122]LI Y L, GUO Y Z, HU H T, et al. A critical assessment of high-temperature dynamic mechanical testing of metals[J]. International Journal of Impact Engineering, 2009, 36(2): 177-184.
[123]范飞林, 许金余. 大直径SHPB实验中的高温加载技术及其应用[J]. 爆炸与冲击, 2013, 33(1):54-60.
FAN F L, XU J Y. High-temperature loading techniques in large-diameter SHPB experiment and its application[J]. Explosion and Shock Waves, 2013, 33(1):54-60. (in Chinese)
[124]张磊, 徐松林, 施春英. 应用杆束系统研究水泥砂浆节理面的压剪动特性[J]. 实验力学, 2016, 31(2):175-185.
ZHANG L, XU S L, SHI C Y. On the dynamic compression-shear characteristics of cement mortar joint surface based on a bunched bar system[J]. Journal of Experimental Mechanics, 2016, 31(2):175-185. (in Chinese)
[125]ZHOU H L, LI C, ZHANG L Q, et al. Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact[J]. Composites Science and Technology, 2018, 155: 91-99.




第40卷
第7期2019年7月兵工学报ACTA
ARMAMENTARIIVol.40No.7Jul.2019

Accesses

Citation

Detail

Sections
Recommended

/