Influence of Aluminum Powder on Energy Release of HMX-based Air-blast Thermobaric Explosives

PIAO Zhongjie;ZHANG Ai'e;LUO Yu;OU Yapeng;JIAO Qingjie

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (6) : 1190-1197. DOI: 10.3969/j.issn.1000-1093.2019.06.009
Paper

Influence of Aluminum Powder on Energy Release of HMX-based Air-blast Thermobaric Explosives

  • PIAO Zhongjie1, ZHANG Ai'e1, LUO Yu1, OU Yapeng2, JIAO Qingjie2
Author information +
History +

Abstract

The shock wave overpressure field was measured through air-blast explosion experiment and calculated by using Autodyn to obtain the energy release law of the aluminized thermobaric explosive (TBX) and the influence of aluminum (Al) powder particle size. The overpressure field of TNT under air-blast loading was measured. The energy level of TBXs was evaluated based on TNT, and the after-burn effect of Al and its contribution to detonation heat were analyzed. The results show that the detonation heats of HMX and AP are due to the overpressure at 3 m. The energy release rate of aluminized TBX decreases due to the decalescence of Al, and increases after Al participating in the reaction. The after-burn effect of Al results in the high energy release rate in far-field, and the overpressure at 13 m approaches to 1.93 TNT equivalent. The two major influences of Al particle size on TBX mainly show inAl2O3 impairing the whole energy of TBX and the contribution of fine Al powder to the far-field overpressure of TBX being relatively lower. The results simulated by Autodyn was adjusted according to the measured data of 5 kg TBX, and the overpressure of 1 000 kg TBX was calculated using the adjusted constraint. The results show that the effective radius of damage of TBX approaches to 72 m, and is increased by about 50% compared with that of TNT. Key

Key words

air-blastthermobaricexplosive / energyreleaselaw / activatedaluminum / overpressurefield / radiusofdamage

Cite this article

Download Citations
PIAO Zhongjie, ZHANG Ai'e, LUO Yu, OU Yapeng, JIAO Qingjie. Influence of Aluminum Powder on Energy Release of HMX-based Air-blast Thermobaric Explosives. Acta Armamentarii. 2019, 40(6): 1190-1197 https://doi.org/10.3969/j.issn.1000-1093.2019.06.009

References



[1]佚名. 美帝民兵导弹第一级和第三级固体发动机性能数据[J]. 固体火箭技术, 1978, 1(试刊): 1-6.
Anonymity. Performance data of the first and third-stage solid rockets of American Minuteman missile[J]. Journal of Solid Rocket Technology, 1978, 1(Tentative Issue): 1-6.(in Chinese)
[2]XINGX L, ZHAO S X, WANG Z Y, et al. Discussions on thermobaric explosives (TBXs)[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(1):14-17.
[3]TRKERL. Thermobaric and enhanced blast explosives (TBX and EBX)[J]. Defence Technology, 2016, 12(6): 423-445.
[4]卢勇, 王伯良, 何中其,等. 温压炸药爆炸能量输出的实验研究[J]. 含能材料, 2014, 22 (5): 684-687.
LU Y, WANG B L, HE Z Q, et al. Experimental research on energy output of thermobaric explosive[J]. Chinese Journal of Energetic Materials, 2014, 22(5): 684-687.(in Chinese)

[5]赵新颖, 王伯良, 李席. 温压炸药在野外近地空爆中的冲击波规律[J]. 爆炸与冲击, 2016, 36(1): 38-42.
ZHAO X Y, WANG B L, LI X. Shockwave characteristics of thermobaric explosive in free-field explosion[J]. Explosion and Shock Waves, 2016, 36(1): 38-42.(in Chinese)

[6]王晓峰, 冯晓军. 温压炸药设计原则探讨[J]. 含能材料, 2016, 24(5): 418-420.
WANG X F, FENG X J. Discussion of formulation design principle of thermobaric explosive[J]. Chinese Journal of Energetic Materials, 2016, 24(5): 418-420.(in Chinese)

[7]黄菊, 王伯良, 仲倩,等. 灰色关联分析在温压炸药配方设计中的应用[J]. 含能材料, 2012, 20(2): 146-150.
HUANG J, WANG B L, ZHONG Q, et al. Application of grey correlation analysis in the formulation design of thermobaric explosive[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 146-150.(in Chinese)
[8]曾亮, 焦清介, 任慧,等. 纳米铝粉粒径对活性量及氧化层厚度的影响[J]. 火炸药学报, 2011, 34(4): 26-29.
ZENG L, JIAO Q J, REN H, et al. Effect of particle size of nano-aluminum powder on oxide film thickness and active aluminum content[J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 26-29.(in Chinese)
[9]金朋刚, 郭炜, 王建灵,等. 不同粒度铝粉在HMX基炸药中的能量释放特性[J]. 含能材料, 2015, 23(10): 989-993.
JIN P G, GUO W, WANG J L, et al. Energy releasing characteristics of aluminum powder in HMX-based explosives[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 989-993.(in Chinese)
[10]陈朗, 冯长根, 赵玉华,等. 含铝炸药爆轰数值模拟研究[J]. 北京理工大学学报, 2001, 21(4):415-419.
CHEN L, FENG C G, ZHAO Y H, et al. Numerical simulations of the detonation of aluminized explosives[J]. Transactions of Beijing Institute of Technology, 2001, 21(4):415-419.(in Chinese)
[11]李媛媛, 王晓峰, 牛余雷,等. 环境氧含量对含铝炸药爆热的影响[J]. 火炸药学报, 2014, 37(2):49-52.
LI Y Y, WANG X F, NIU Y L, et al. Effects of environment oxygen content on heat of detonation of aluminized explosive[J] Chinese Journal of Explosives & Propellants, 2014, 37(2):49-52.(in Chinese)
[12]任新联, 王辉, 徐司雨,等. 铝粉粒度对RDX基含铝炸药水中爆炸近场特性的影响[J]. 爆破器材, 2015, 44(6):29-33.
REN X L, WANG H, XU S Y, et al. The effect of aluminum particle size on the characteristic of RDX based aluminized explosives underwater close-field explosion[J]. Explosive Materials, 2015, 44(6):29-33.(in Chinese)
[13]韩勇, 韩敦信, 卢校军,等. 含铝炸药爆压及能量释放过程的研究[J]. 含能材料, 2003, 11(4):191-193.
HAN Y, HAN D X,LU X J, et al. Study on the curing of EMCDB propellant shaped by granule-casting process[J]. Chinese Journal of Energetic Materials, 2003, 11(4):191-193.(in Chinese)
[14]金朋刚, 郭炜, 任松涛,等. TNT密闭环境中能量释放特性研究[J]. 爆破器材, 2014, 43(2):10-14.
JIN P G, GUO W, REN S T, et al. Research on TNT energy release characteristics in enclosed condition[J]. Explosive Materials, 2014, 43(2):10-14.(in Chinese)

[15]TRZCISKIW A, MAIZ L. Thermobaric and enhanced blast explosives-properties and testing methods[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 632-644.
[16]高旭东, 郭敏, 孙韬, 等. 炮射温压弹对人员目标的毁伤效能研究[J]. 弹箭与制导学报, 2011, 31(3):123-125.
GAO X D, GUO M, SUN T, et al. The damage efficiency research on cannon thermobaric ammunition to personnel target[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(3):123-125.(in Chinese)
[17]惠君明, 陈天云. 炸药爆炸理论[M]. 南京:江苏科学技术出版社, 1995.
HUI J M, CHEN T Y. Theory of explosive detonation[M]. Nanjing: Jiangsu Science and Technology Press, 1995.

[18]ZHAOQ, NIE J X, ZHANG W, et al. Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives[J]. Chinese Physics B, 2017, 26(5): 054502.
[19]TANGUAYV, GOROSHIN S, HIGGINS A J, et al. Aluminum particle combustion in high-speed detonation products[J]. Combustion Science & Technology, 2009, 181(4):670-693.
[20]GILEVS D, ANISICHKIN V F. Interaction of aluminum with detonation products[J]. Combustion Explosion & Shock Waves, 2006, 42(1):107-115.
[21]裴明敬, 田朝阳, 胡华权, 等. 铝粉在温压炸药爆炸过程中的响应分析[J]. 火炸药学报, 2013, 36(4):7-12.
PEI M J, TIAN Z Y, HU H Q, et al. Response analysis of aluminum in the process of thermobaric explosive detonation[J]. Chinese Journal of Explosives & Propellants, 2013, 36(4):7-12.(in Chinese)
[22]沈飞, 王辉, 徐司雨. 微/纳米粒度级配对炸药爆轰波阵面Dn(κ)关系的影响[J]. 火炸药学报, 2018, 41(1): 61-65.
SHEN F, WANG H, XU S Y. Influence of micro-/nano-scaled particle gradation on the Dn(κ) relation of detonation wave front[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1):61-65.(in Chinese)
[23]辛春亮, 徐更光, 刘科种,等. 含铝炸药Miller能量释放模型的应用[J]. 含能材料, 2008, 16(4):436-440.
XIN C L, XU G G, LIU K Z, et al. Application of miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(4):436-440.(in Chinese)

[24]卢红琴, 刘伟庆. 空中爆炸冲击波的数值模拟研究[J]. 武汉理工大学学报, 2009,31(19):105-108.
LU H Q, LIU W Q. Research on numerical simulation of blast wave in air[J]. Journal of Wuhan University of Technology, 2009,31(19):105-108.





第40卷第6期
2019年6月兵工学报ACTA
ARMAMENTARIIVol.40No.6Jun.2019

440

Accesses

0

Citation

Detail

Sections
Recommended

/