Analysis of Micromechanical Characteristics of Softness Consolidation Abrasives

JI Shiming;QIU Wenbin;ZENG Xi;XI Fengfei;QIU Lei;ZHENG Qianqian;SHI Meng

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (5) : 1068-1076. DOI: 10.3969/j.issn.1000-1093.2019.05.020
Paper

Analysis of Micromechanical Characteristics of Softness Consolidation Abrasives

  • JI Shiming, QIU Wenbin, ZENG Xi, XI Fengfei, QIU Lei, ZHENG Qianqian, SHI Meng
Author information +
History +

Abstract

A model of microscopic contact mechanics inside abrasives group is established to analyze the force chain transfer process. The Li-Dafalias elastoplastic dilatant constitutive model is used to reflect the relationship between micro-force and displacement within the abrasives group. The evolution of force chain network of abrasives group with different porosities and the pressure distribution on workpiece surface were simulated using the three-dimensional particle flow code (PFC3D) software. The simulated results show that, when the porosity exceeds 44%, the internal force chain transmission path of abrasives group disappears; the surface pressure of workpiece exhibits a periodic distribution, and the pressure amplitude decreaseswith the increase in porosity. A test platform was set up, and the influence laws of porosity and abrasive mesh on the surface roughness of workpiece can be concluded after a series of polishing experiments by pneumatic grinding wheels with softness consolidation abrasives. The experimental results show that the contour arithmetic mean deviation of workpiece surface roughness is small and decreases from 313.744 nm to 67.11 nm when the abrasive mesh is 800 and the porosity is 24%. Key

Key words

softnessconsolidationabrasivegroup / pneumaticwheel / dilatancyeffect / scratchescontrolling / constitutivemodel / roughness / micromechanicalcharacteristic

Cite this article

Download Citations
JI Shiming, QIU Wenbin, ZENG Xi, XI Fengfei, QIU Lei, ZHENG Qianqian, SHI Meng. Analysis of Micromechanical Characteristics of Softness Consolidation Abrasives. Acta Armamentarii. 2019, 40(5): 1068-1076 https://doi.org/10.3969/j.issn.1000-1093.2019.05.020

References



[1]计时鸣, 曾晰, 金明生,等. 软固结磨粒群加工方法及材料去除特性的分析[J]. 机械工程学报, 2013, 49(5): 173-181.
JI S M,ZENG X,JIN M S,et al. New finishing method of softness consolidation abrasives and material removal characteristic analysis[J]. Journal of Mechanical Engineering, 2013, 49(5): 173-181.(in Chinese)
[2]王卓. 光学材料加工亚表面损伤检测及控制关键技术研究[D]. 长沙:国防科学技术大学,2008.
WANG Z. Research on key technologies of subsurface damage detection and control in optical materials processing[D].Changsha: National University of Defense Technology, 2008. (in Chinese)
[3]蔡立,田守信.光学元件加工技术[M].武汉:华中工学院出版社,1987.
CAI L, TIAN S X. Optical component processing technology[M]. Wuhan: Huazhong Institute of Technology Press, 1987. (in Chinese)

[4]WALKERD D, BALDWIN A, EVANS R, et al. A quantitative comparison of three grolishing techniques for the precessions[J]. Proceedings of SPIE, 2007, 6671: 66711H-1-66711H-9.
[5]朱传睿. 基于五轴混联气囊抛光机的气囊抛光工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
ZHU C R, Research on bonnet polishing process based on five axis hybrid machine[D].Harbin:Harbin Institute of Technology, 2016. (in Chinese)

[6]CHEUNGC F, KONG L B, HO L T, et al. Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing[J].Precision Engineering, 2011, 35(4): 574-590.
[7]JAKOBSENP D, LANGMAACK L, DAHL F, et al. Development of the soft ground abrasion tester (SGAT) to predict TBM tool wear, torque and thrust[J]. Tunnelling and Underground Space Technology, 2013, 38(9): 398-408.
[8]SONGJ F, YAO Y X, DONG Y G, et al. Prediction of surface quality considering the influence of the curvature radius for polishing of a free-form surface based on local shapes[J]. International Journal of Advanced Manufacturing Technology, 2017, 95(1): 1-15.
[9]HUAIW B, TANG H, SHI Y Y, et al. Prediction of surface roughness ratio of polishing blade of abrasive cloth wheel and optimization of processing parameters[J]. International Journal of Advanced Manufacturing Technology, 2016, 90(1/2/3/4): 1-10.

[10]曾晰, 潘烨, 计时鸣. 芳纶浆粕纤维增强均质气压砂轮特性[J].复合材料学报, 2017, 34(10): 2321-2329.
ZENG X, PAN Y, JI S M. Characteristic of AFRP pneumatic wheel[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2321-2329. (in Chinese)

[11]郑颖人,沈珠江,龚晓南. 岩土塑性力学原理[M]. 北京:中国建筑工业出版社,2003.
ZHEN Y R, SHEN Z J, GONG X N. Principle of rock mechanics[M]. Beijing: China Building Industry Press, 2003. (in Chinese)

[12]CHRISTOFFERSENJ, MEHRABADI M M, NEMAT-NASSER S. A micromechanical description of granular material behavior[J]. Journal of Applied Mechanics, 1981, 48(2): 339-344.
[13]KRUYTN P, ROTHENBURG L. Micromechanical definition of the strain tensor for granular materials[J]. Journal of Applied Mechanics, 1996, 63(3): 706-711.
[14]BAGIK. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996, 22(3): 165-177.
[15]LIX, YU H S, LI X S. Macro-micro relations in granular mechanics[J]. International Journal of Solids and Structures, 2009, 46(25/26): 4331-4341.
[16]JOHNSONK L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society of London, 1971, 324(1558): 301-313.
[17]THORNTONC. Interparticle sliding in the presence of adhesion[J]. Journal of Physics D: Applied Physics, 1991, 24(11): 1942-1946.
[18]迟杰明,赵成刚,李小军. 砂土剪胀机理的研究[J]. 土木工程学报, 2009, 42(3): 99-104.
CHI J M, ZHAO C G, LI X J. Study on the mechanism of sand dilatancy[J]. Journal of Civil Engineering, 2009,42(3):99-104. (in Chinese)

[19]迟杰明,赵成刚,李小军. 剪胀性砂土本构模型的研究[J]. 岩土力学, 2008, 29(11): 2939-2944.
CHI J M, ZHAO C G, LI X J. Study on constitutive model of dilatancy sand[J]. Rock and Soil Mechanics, 2008, 29(11): 2939-2944. (in Chinese)

[20]ISHIHARAK, TATSUOKA F, YASUADA S. Undrained deformation and liquefaction of sand under cyclic stress[J]. Soils and Foundations, 2008, 15(1): 29-44.
[21]LIX S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Geotechnique, 2000, 50(4): 449-460.
[22]沈珠江. 理论土力学[M].北京:中国水利水电出版社,2000.
SHEN Z J. Theoretical soil mechanics[M]. Beijing: China Water Conservancy and Hydropower Press,2000. (in Chinese)

[23]计时鸣,许亚敏,金明生,等. 软固结磨粒气压砂轮的力学特性分析[J].中国机械工程, 2012, 23(19): 2366-2372.
JI S M, XU Y M, JIN M S, et al. Mechanical analysis of pressure grinding wheel with soft abrasive consolidation[J].China Mechanical Engineering, 2012, 23(19): 2366-2372. (in Chinese)





第40卷第5期
2019年5月兵工学报ACTA
ARMAMENTARIIVol.40No.5May2019

Accesses

Citation

Detail

Sections
Recommended

/