Interval Uncertainty Analysis of Soft-landing Dynamics of Lunar Lander

CHEN Zhaoyue;LIU Li;CHEN Shulin;CUI Ying

Acta Armamentarii ›› 2019, Vol. 40 ›› Issue (2) : 442-448. DOI: 10.3969/j.issn.1000-1093.2019.02.025
Research Notes

Interval Uncertainty Analysis of Soft-landing Dynamics of Lunar Lander

  • CHEN Zhaoyue, LIU Li, CHEN Shulin, CUI Ying
Author information +
History +

Abstract

Dynamic analysis of soft-landing is very important for the design of lunar lander. At present, the determined landing attitude and speed are considered while not considering the uncertainty of these parameters in the analysis of soft-landing dynamics. Based on Chebyshev interval analysis method, an analysis process of landing dynamic interval based on nonlinear finite-element model is proposed for the dynamic characteristics of landing process. The upper and lower bounds of dynamic response are calculated using Chebyshev method and compared with the simulated results of Monte Carlo method. Comparative result shows that the analyzed results of Chebyshev interval analysis method can fully cover those of Monte Carlo method, and the dynamic interval is not enlarged. The influence of truncation order on the analytic error of dynamic interval was analyzed. The analyzed result shows that the truncation order has little influence on analysis error. Chebyshev method has the advantage of high accuracy and efficiency. Key

Key words

lunarlander / intervalparameter / uncertaintyanalysis / Chebyshevpolynomial / MonteCarlomethod

Cite this article

Download Citations
CHEN Zhaoyue, LIU Li, CHEN Shulin, CUI Ying. Interval Uncertainty Analysis of Soft-landing Dynamics of Lunar Lander. Acta Armamentarii. 2019, 40(2): 442-448 https://doi.org/10.3969/j.issn.1000-1093.2019.02.025

References



[1]LAVENDERR E. Touchdown dynamics analysis of spacecraft for soft lunar landing: NASA TN D-2001 [R]. Washington, US: NASA, 1964.
[2]王少纯, 邓宗全, 杨涤, 等. 月球着陆器新结构的ADAMS仿真研究[J].哈尔滨工业大学学报, 2007, 39(9): 1392-1394.
WANG S C, DENG Z Q, YANG D, et al. Simulation research on novel structure of lunar lander based on ADAMS[J]. Journal of Harbin Institute of Technology, 2007, 39(9):1392-1394.(in Chinese)
[3]董威利, 刘莉, 周思达, 等. 月球探测器软着陆动力学及影响因素分析[J].宇航学报, 2014, 35(4): 388-396.
DONG W L, LIU L, ZHOU S D, et al. Analysis on soft-landing dynamics and influence factors of lunar lander[J]. Journal of Astronautics, 2014, 35(4):388-396.(in Chinese)

[4]蒋万松, 黄伟, 沈祖炜, 等. 月球探测器软着陆动力学仿真[J].宇航学报, 2011, 32(3): 462-469.
JIANG W S, HUANG W, SHEN Z W, et al. Softlanding dynamics simulation for lunar explorer[J]. Journal of Astronautics, 2011, 32(3):462-469.(in Chinese)

[5]万峻麟, 聂宏, 李立春,等. 基于瞬态动力学方法的月球探测器软着陆腿着陆冲击性能分析[J]. 兵工学报, 2010, 31(5): 567-573.
WAN J L, NIE H, LI L C, et al. Analysis of the landing impact performance for lunar landing leg with transient dynamic method[J]. Acta Armamentarii, 2010, 31(5):567-573.(in Chinese)
[6]万峻麟, 聂宏, 陈金宝,等. 月球着陆器有效载荷着陆冲击响应分析[J]. 宇航学报, 2010, 31(11): 2456-2464.
WAN J L, NIE H, CHEN J B, et al. Impact response analysis of payloads of lunar lander for lunar landing[J]. Journal of Astronautics, 2010, 31(11):2456-2464.(in Chinese)

[7]MERCHANTD, SAWDY D. Monte Carlo dynamic analysis for lunar module landing loads[J]. Journal of Spacecraft and Rockets, 1971, 8(1): 48-55.
[8]陈金宝, 万峻麟, 李立春,等. 月球探测器着陆性能若干影响因素分析[J].宇航学报, 2010, 31(3): 669-673.
CHEN J B, WAN J L, LI L C, et al. Analysis on the influencing factors of performance in lunar lander[J]. Journal of Astronautics, 2010, 31(3):669-673.(in Chinese)

[9]QIUZ P, CHEN S H, SONG D T. The displacement bound estimation for structures with an interval description of uncertain parameters[J]. Communications in Numerical Methods in Engineering, 1996, 12(1): 1-11.

[10]ALEFELDG, MYLER G. Interval analysis: theory and applications[J]. Journal of Computational and Applied Mathematics, 2000, 121(1): 421-464.
[11]QIUZ P, WANG X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach[J]. International Journal of Solids and Structures, 2003, 40(20): 5423-5439.
[12]MAKINOK, BERZ M. Taylor models and other validated functional inclusion methods[J]. International Journal of Pure and Applied Mathematics, 2003, 4(4): 379-456.
[13]NEDIALKOVN S. Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation[D]: Toronto, Canada:University of Toronto, 1999.
[14]QIUZ P, WANG X P. Parameter perturbation method for dyna- micresponses of structures with uncertain-but-bounded parameters based on interval analysis[J]. International Journal of Solids and Structures, 2005, 42(18/19): 4958-4970.
[15]QIUZ P, MA L H, WANG X J. Non-probabilistic interval analysismethod for dynamic response analysis of nonlinear systemswith uncertainty[J]. Journal of Sound and Vibration, 2009, 319(1/2):531-540.
[16]WUJ L, ZHANG Y Q, CHEN L P,et al. A Chebyshev interval method for nonlinear dynamic systems under uncertainty[J]. Applied Mathematical Modelling, 2013, 37(6): 4578-4591.
[17]WUJ L, LUO Z, ZHANG Y P, et al. An interval uncertain optimization method for vehicle suspensions using chebyshev metamodels[J]. Applied Mathematical Modelling, 2014, 38(15/16):3706-3723.
[18]WUJ L, LUO Z, ZHENG J ,P et al. Incremental modeling of a new high-order polynomial surrogate model[J]. Applied Mathematical Modelling, 2016, 40(7/8): 4681-4699.
[19]吴景铼. 基于Chebyshev多项式的动力学不确定性区间算法研究[D]. 武汉:华中科技大学, 2013.
WU J L. Dynamics uncertainty research based on interval arithmetic using Chebyshev polynomials[D]. Wuhan:Huazhong University of Science and Technology, 2013.(in Chinese)

[20]XIAB Z, QIN Y, YU D J, et al. Dynamic response analysis of structure under time-variant interval process model[J]. Journal of Sound and Vibration, 2016, 381:121-138.
[21]LIC, CHEN B S, PENG H J, et al. Sparse regression Chebyshev polynomial interval method for nonlinear dynamic systems under uncertainty[J]. Applied Mathematical Modelling, 2017, 51(1):505-525.
[22]刘坚, 雷济荣, 夏百战. 基于Chebyshev展开的区间穿孔板超材料分析[J]. 力学学报, 2017, 49(1): 137-148.
LIU J, LEI J R, XIA B Z. The interval analysis of multilayer-metamaterials with perforated apertures based on Chebyshev expansion[J]. Chinese Journal of Theoretical and Applied Mecha- nics,2017, 49(1):137-148.(in Chinese)
[23]陈剑, 李士爱, 刘策, 等. 基于Chebyshev区间方法的动力总成悬置系统稳健性优化[J]. 中国机械工程, 2018, 29(3):314-319.
CHEN J,LI S A, LIU C, et al. Robustness optimization of powertrainmounting systems based on Chebyshev interval method[J].China Mechanical Engineering, 2018, 29(3):314-319.(in Chinese)
[24]LAURENSONR, MELLIERE R, MOORE R, et al. Analyses and limited evaluation of payload and legged landing system structures for the survivable soft landing of instrument payloads: NASA-CR-111919 [R]. Washington, DC, US: NASA,1971.
[25]董威利, 刘莉, 周思达. 含局部非线性的月球探测器软着陆动力学模型降阶分析[J]. 航空学报, 2014, 35(5): 1319-1328.
DONG W L, LIU L,ZHOU S D. Model reduction analysis of soft landing dynamics for lunar lander with local nonlinearities [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1319-1328.(in Chinese)
[26]陈树霖, 刘莉, 董威利. 月球探测器着陆腿动力学建模与仿真[J]. 南京航空航天大学学报, 2014, 46(3): 469-474.
CHEN S L, LIU L, DONG W L. Dynamics modeling and simulation for landing legs of lunar lander[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3):469-474.(in Chinese)
[27]董威利. 月球探测器软着陆动力学分析及动态子结构技术研究[D]. 北京:北京理工大学, 2015.
DONG W L.Dynamic analysis of lunar detector soft landing and research on dynamic substructure technology[D]. Beijing:Beijing Institute of Technology, 2015.(in Chinese)

[28]梁东平, 柴洪友.着陆冲击仿真月壤本构模型及有限元建模[J]. 航天器工程, 2012, 21(1): 18-24.
LIANG D P, CHAI H Y. Lunar soil constitutive model and finite element modeling for landing impact simulation[J]. Spacecraft Engineering, 2012, 21(1):18-24.(in Chinese)






下4篇留版

第40卷
第2期2019年2月兵工学报ACTA
ARMAMENTARIIVol.40No.2Feb.2019

431

Accesses

0

Citation

Detail

Sections
Recommended

/