A Network Control-based QoS-enhanced MAC for UAV Cloud

GAO Ang;DUAN Wei-jun;LI Li-xin;ZHANG Hui-sheng;HU Yan-su

Acta Armamentarii ›› 2018, Vol. 39 ›› Issue (9) : 1762-1771. DOI: 10.3969/j.issn.1000-1093.2018.09.013
Paper

A Network Control-based QoS-enhanced MAC for UAV Cloud

  • GAO Ang1,2, DUAN Wei-jun1,2, LI Li-xin1, ZHANG Hui-sheng1, HU Yan-su3
Author information +
History +

Abstract

Unmanned aerial vehicle (UAV) cloud can greatly enhance the intelligence of unmanned system by dynamically uploading the compute-intensive applications to the cloud. The different UAV missions may have different quality of service (QoS) requirements due to the uncertainty of UAV missions and the fast-changing battlefield environment. A BP neuron network-based feedback differentiated control approach for QoS-aware (BPFD)-MAC in UAV cloud is proposed, which can support both absolute and relative QoS guarantees with the consideration of energy saving. The hardware experiments demonstrate the feasibility of BPFD-MAC. Under heavy loads, BPFD has better throughput and power use efficiency; and underlight load, BPFD has lower total energy consumption.Key

Key words

UAVcloud / qualityofservice / mediumaccesscontrol / neuronnetwork

Cite this article

Download Citations
GAO Ang, DUAN Wei-jun, LI Li-xin, ZHANG Hui-sheng, HU Yan-su. A Network Control-based QoS-enhanced MAC for UAV Cloud. Acta Armamentarii. 2018, 39(9): 1762-1771 https://doi.org/10.3969/j.issn.1000-1093.2018.09.013

References



[1]刘重, 高晓光, 符小卫,等. 未知环境下异构多无人机协同搜索打击中的联盟组建[J]. 兵工学报, 2015, 36(12):2284-2297.
LIU Zhong, GAO Xiao-guang, FU Xiao-wei, et al. Coalition formation of multiple heterogeneous unmanned aerial vehicles in cooperativesearch and attack in unknown environment[J]. Acta Armamentarii, 2015, 36(12): 2284-2297.(in Chinese)
[2]LuoF, Jiang C, Yu S, et al. Stability of cloud-based UAV systems supporting big data acquisition and processing[J]. IEEE Transactions on Cloud Computing, 2017, 99:1-1.
[3]Hu G, Tay W P, Wen Y. Cloud robotics: architecture, challenges and applications[J]. IEEE Network, 2012, 26(3):21-28.
[4]Kamei K, Nishio S, Hagita N, et al. Cloud networked robotics[J]. IEEE Network, 2012, 26(3):28-34.
[5]Li F, Wan J F, Zhang P, et al. Usage-specific semantic integration for cyber-physical robot systems[J]. ACM Transactions on Embedded Computing Systems, 2016, 15(3):50.
[6]Chaisiri S, Lee B S, Niyato D. Robust cloud resource provisioning for cloud computing environments[C]∥Proceedings of IEEE International Conference on Service-Oriented Computing and Applications. Irvine, CA, US: IEEE, 2011: 1-8.
[7]Pandey P, Pompili D, Yi J. Dynamic collaboration between networked robots and clouds in resource-constrained environments[J]. IEEE Transactions on Automation Science & Engineering, 2015, 12(2):471-480.
[8]Saxena N, Roy A, Shin J. Dynamic duty cycle and adaptive contentionwindow based QoS-MAC protocol for wireless multimedia sensor networks[J]. Computer Networks, 2008, 52(13):2532-2542.
[9]Subramanian A K, Paramasivam I. PRIN:a priority-based energy efficient MAC protocol for wireless sensor networks varying the sample inter-arrival time[J]. Wireless Personal Communications, 2016, 92(3):1-19.

[10]JangBeakcheol, Lim J B, SichitiuM L. An asynchronous sche- duledMAC protocol for wireless sensor networks[J]. ComputerNetworks, 2013, 57(1):85-98.
[11]Naderi M Y, Nintanavongsa P, Chowdhury K R. RF-MAC: a medium access control protocol for rechargeable sensor networks powered by wireless energy harvesting[J]. IEEE Transactions on Wireless Communications, 2014, 13(7):3926-3937.
[12]Chang B J, Chen S P. Cross-layer-based adaptive congestion and contention controls for accessing cloud services in 5G IEEE 802.11family wireless networks[J]. Computer Communications, 2017, 106:33-45.
[13]zen Y, Bandrmal N, Baylm?瘙塂 C. Two tiered service differentiation mechanism for wireless multimedia sensor network MAC layers[C]∥Proceedings of Signal Processing and Communications Applications Conference. Malatya, Turkey: IEEE, 2015:2318-2321.
[14]Natkaniec M, Kosek-Szott K, Szott S, et al. A survey of medium access mechanisms for providing QoS in Ad-Hoc networks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(2):592-620.
[15]Barua S, Afroz F, Islam S S, et al. Comparative study on priority based QOS aware MAC protocols for WSN[J]. International Journal of Wireless & Mobile Networks, 2014, 6(5):175-181.
[16]Gao A, Hu Y. A feedback approach for QoS-enhanced MAC in wireless sensor network[J]. Journal of Sensors, 2016(2):1-12.
[17]Funahashi K I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, 2(3):183-192.
[18]Man Z, Wu H R, Liu S, et al. A new adaptive back-propagation algorithm based on Lyapunov stability theory for neural networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1580-1591.
[19]张国翊, 胡铮. 改进 BP 神经网络模型及其稳定性分析[J]. 中南大学学报:自然科学版, 2011, 42(1): 115-124.
ZHANG Guo-yi, HU Zheng. Improved BP neural network model and its stability analysis[J]. Journal of Central South University:Science and Technology,2011, 42(1): 115-124. (in Chinese)






第39卷
第9期2018年9月兵工学报ACTA
ARMAMENTARIIVol.39No.9Sep.2018

Accesses

Citation

Detail

Sections
Recommended

/