Research on Measuring Point Layout for Roundness Measurement of Large Diameter Revolving Parts

WEN Xue;TAN Jian-ping;LIU Su-qi;LI Xin-he

Acta Armamentarii ›› 2018, Vol. 39 ›› Issue (6) : 1205-1214. DOI: 10.3969/j.issn.1000-1093.2018.06.022
Paper

Research on Measuring Point Layout for Roundness Measurement of Large Diameter Revolving Parts

  • WEN Xue, TAN Jian-ping, LIU Su-qi, LI Xin-he
Author information +
History +

Abstract

In order to improve the roundness measurement accuracy of large diameter revolving parts under rotating state, an optimization model is established based on the influences of positions of three measuringpoints on the measurement accuracy, and an optimization strategy of position of three points is presentedon the basis of particle swarm and genetic hybridization algorithm. The influence of sensor position on roundness extraction accuracy is analyzed, and the optimization function of measuring point position based on the error transfer coefficients is established by using the outer contour measurement model and roundness extraction technology. A hybrid algorithm of a new particle population is generated through particle swarm optimization and genetic complement, and the circumferential angles of the sensors are obtained under the given harmonic orders. The circumferential layout angles of the measuring point under the condition of the given harmonic orders (160,240, and 480) are calculated, and the error transfer coefficientsbefore and after optimizing the position of measuring points are compared. The accuracy of roundness extraction was tested with the virtual and real revolving parts. The results show that the error transfer coefficient after position optimization is less than that before optimization, and the extracted roundness value is closer to the true roundness value with accuracy of about 0.010 mm. The proposed optimization strategy can be used to improve the measurement accuracy of the revolving part roundness, and provides an effective detection means for manufacturing high precision and large diameter revolving parts. Key

Key words

largediameterrevolvingpart / measuringpointoptimization / measurementaccuracy / three-pointmethod / particleswarmoptimization / geneticalgorithm / roundness

Cite this article

Download Citations
WEN Xue, TAN Jian-ping, LIU Su-qi, LI Xin-he. Research on Measuring Point Layout for Roundness Measurement of Large Diameter Revolving Parts. Acta Armamentarii. 2018, 39(6): 1205-1214 https://doi.org/10.3969/j.issn.1000-1093.2018.06.022

References



[1]黄富贵, 郑育军. 基于区域搜索的圆度误差评定方法[J]. 计量学报, 2008, 29(2):117-119.
HUANG Fu-gui, ZHENG Yu-jun. A method for roundness error evaluation based on area hunting[J]. Acta Metrologica Sinica, 2008, 29(2):117-119. (in Chinese)
[2]罗钧, 林于晴, 刘学明,等. 改进蜂群算法及其在圆度误差评定中的应用[J]. 机械工程学报, 2016, 52(16):27-32.
LUO Jun, LIN Yu-qing, LIU Xue-ming, et al. Research on roundness error evaluation based on the improved artificial bee colonyalgorithm[J]. Journal of Mechanical Engineering, 2016, 52(16): 27-32. (in Chinese)
[3]龚玉玲, 徐晓栋, 苏召宁,等. 基于自适应区域搜索算法的圆度误差评定[J]. 制造业自动化, 2017, 39(3):56-59.
GONG Yu-ling, XU Xiao-dong, SU Zhao-ning, et al. Roundness error evaluation based on the algorithm of self-adaptive region searching[J]. Manufacturing Automation, 2017, 39(3):56-59. (in Chinese)
[4]张春阳, 雷贤卿, 李济顺, 等. 基于几何优化的圆度误差评定算法[J]. 机械工程学报, 2010, 46(12):8-12.
ZHANG Chun-yang, LEI Xian-qing, LI Ji-shun, et al. Method for roundness error evaluation based on geometry optimization[J]. Journal of Mechanical Engineering, 2010, 46(12):8-12. (in Chinese)
[5]吴新杰, 杨洋, 许超, 等. 基于小波变换处理圆度误差的测量方法[J]. 仪器仪表学报, 2008, 29(9):1961-1964.
WU Xin-jie, YANG Yang, XU Chao, et al. Method for the measurementof roundness error based on wavelet transform[J].Chinese Journal of Scientific Instrument, 2008, 29(9):1961-1964. (in Chinese)
[6]洪迈生, 邓宗煌, 陈健强, 等. 精确的时域三点法圆度误差分离技术[J]. 上海交通大学学报, 2000, 34(10):1317-1319.
HONG Mai-sheng, DENG Zong-huang, CHEN Jian-qiang, et al. Accurate time domain three point method for error separation of roundness[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1317-1319. (in Chinese)
[7]武晋燮. 几何量精密测量技术[M]. 哈尔滨:哈尔滨工业大学出版社, 1989.
WU Jin-xie. Precise measurement technology of geometric quantity[M]. Harbin: Harbin Institute of Technology Press, 1989. (in Chinese)
[8]刘庆民, 张蕾, 吴立群, 等. 基于机器视觉的非均匀分布点圆度误差评定[J]. 计量学报, 2016, 37(6) :567-570.
LIU Qing-min, ZHANG Lei, WU Li-qun, et al. Roundness error evaluation of non-uniformly distributed data points based on machine vision[J]. Acta Metrologica Sinica, 2016, 37(6) :567-570. (in Chinese)
[9]刘杰, 李华, 付西红. 大尺寸筒状设备圆度误差测量系统[J]. 红外与激光工程, 2016, 45(1):264-268.
LIU Jie, LI Hua, FU Xi-hong. Measurement system of large-scale sleeve roundness error[J]. Infrared and Laser Engineering, 2016, 45(1):264-268. (in Chinese)
[10]雷贤卿. 基于误差分离的圆柱度精密测量技术研究[D]. 西安:西安理工大学, 2007.
LEI Xian-qing. Precision measurement of cylindricity based on error separation[D]. Xi'an:Xi'an University of Technology, 2007. (in Chinese)
[11]Kiyono S, Gao W. On-machine measurement of large mirror profile by mixed method[J]. JSME International Journal Series C, 1994,37(2):300-306.
[12]Horikawa O, Maruyama N, Shimada M. A low cost, high accuracy roundness measuring system[J]. Precision Engineering, 2001, 25(3):200-205.
[13]GaoW, Kiyono S, Sugawara T. High-accuracy roundness measurementby a new error separation method[J]. Precision Engineering, 1997, 21(2):123-133.
[14]Jeong G B, Kim D H, Jang D Y. Real time monitoring and diagnosis system development in turning through measuring a roundness error based on three-point method[J]. International Journal of Machine Tools & Manufacture, 2005, 45(12):1494-1503.
[15]García-Plaza E, NAu'G1ez P J, Martin A R. Evaluation of on-line signals for roundness monitoring[J]. Advanced Materials Research, 2012, 498(4):85-90.
[16]顾启泰, 刘学斌, 叶京生, 等.多步法误差分离技术在圆度测量中的应用[J].清华大学学报:自然科学版, 1990, 30(5):45-52.
GU Qi-tai, LIU Xue-bin, YE Jing-sheng, et al. Application of multi-step error separation technique in roundness measurement[J]. Journal of Tsinghua University: Science and Technology,1990, 30(5):45-52. (in Chinese)
[17]洪迈生, 蔡萍. 多步法误差分离技术的比较分析[J]. 上海交通大学学报, 2004, 38(6):877-881.
HONG Mai-sheng, CAI Ping. Application of multi step error separationtechnique in roundness measurement[J]. Journal of Shanghai Jiao Tong University, 2004, 38(6):877-881. (in Chinese)
[18]陈卓宁, 李江萍, 黄培,等. 两步法圆度误差分离的原理及参数选择[J]. 华中科技大学学报:自然科学版, 1994,22(4):105-109.
CHEN Zhuo-ning, LI Jiang-ping, HUANG Pei, et al. Principle and parameter selection of roundness error separation in two step method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 1994, 22(4):105-109. (in Chinese)
[19]雷贤卿, 李言, 周彦伟, 等. 3点法圆度误差分离技术的新算法[J]. 兵工学报, 2007, 28(1):73-77.
LEI Xian-qing, LI Yan, ZHOU Yan-wei, et al. A new matrix algorithm of three-point method roundness error separation technique[J]. Acta Armamentarii, 2007, 28(1):73-77. (in Chinese)
[20]肖怀. 对三点测圆法的形状失真问题的研究[J].吉林大学学报:工学版, 1983, 10(3):39-55.
XIAO Huai. Research on shape distortion of three point circle measuring method[J]. Journal of Jilin University: Engineering and Technology Edition, 1983,10(3):39-55. (in Chinese)
[21]朱训生, 贝季瑶. 三点法EST形状失真的根本原因及克服办法[J]. 上海交通大学学报, 1988, 12(4):4-15,117.
ZHU Xun-sheng, BEI Ji-yao. Underlying cause of profile distortion in three-point roundness measurement and solution methods[J]. Journal of Shanghai Jiao Tong University, 1988, 12(4):4-15,117. (in Chinese)
[22]Sase H, Fujimaki K, Mitsui K. Study of new algorithm for weighting coefficient and sensor angle in three-point method[J]. Journal of the Japan Society for Precision Engineering, 2008, 74(6): 593-597.
[23]Gosciniak I. A new approach to particle swarm optimization algorithm[J]. Expert Systems with Applications, 2015, 42(2): 844-854.
[24]阳琼芳, 孙如祥. 粒子群与遗传算法的混合算法[J]. 华侨大学学报:自然科学版, 2015, 36(6):645-649.
YANG Qiong-fang, SUN Ru-xiang. Mixed research on particle swarm optimization and genetic algorithm[J]. Journal of Huaqiao University: Natural Science, 2015, 36(6):645-649. (in Chinese)




第39卷第6期
2018年6月兵工学报ACTA
ARMAMENTARIIVol.39No.6Jun.2018

390

Accesses

0

Citation

Detail

Sections
Recommended

/