Non-homogeneous Training Sample Detection Method Based on Sparse Recovery with Prior Information

LI Zhi-hui;ZHANG Yong-shun;LIU Han-wei;WANG Qiang;LIU Yang

Acta Armamentarii ›› 2018, Vol. 39 ›› Issue (2) : 331-337. DOI: 10.3969/j.issn.1000-1093.2018.02.016
Paper

Non-homogeneous Training Sample Detection Method Based on Sparse Recovery with Prior Information

  • LI Zhi-hui1, ZHANG Yong-shun1,2, LIU Han-wei1, WANG Qiang1, LIU Yang1
Author information +
History +

Abstract

For the degradation of target detection performance in space-time adaptive processing (STAP) due to non-homogeneous training samples contaminated by target-like signals, a non-homogeneous training sample detection method based on prior information and sparse recovery is proposed. The sparse representationcoefficient of cell under test (CUT) is recovered using focal underdetermined system solver (FOCUSS). A “sparse filter” is constructed based on radar system parameters.The target and “pseudo point” signals are filtered out by “sparse filter”, and the clutter covariance matrix is estimated. The generalizedinner product (GIP) method is integrated to eliminate the contaminated training samples. Simulation analyses show that the proposed method can effectively eliminate the contaminated training samples and improve the target detection performance of STAP in non-homogeneous environment. Key

Key words

airborneradar / space-timeadaptiveprocessing / priorinformation / sparserecovery / non-homogeneoustrainingsampledetection

Cite this article

Download Citations
LI Zhi-hui, ZHANG Yong-shun, LIU Han-wei, WANG Qiang, LIU Yang. Non-homogeneous Training Sample Detection Method Based on Sparse Recovery with Prior Information. Acta Armamentarii. 2018, 39(2): 331-337 https://doi.org/10.3969/j.issn.1000-1093.2018.02.016

References



[1]WardJ.Space-time adaptive processing for airborne radar [R]. Lexington, MA, US: MIT Lincoln Laboratory, 1994.
[2]KlemmR. Principles of sparse-time adaptive processing [M]. London, UK: Institute of Electrical Engineering, 2006.
[3]Melvin W L. Space-time adaptive radar performance in heterogeneous clutter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (2):621-633.
[4]Melvin W L, Wicks M C. Improving practical space-time adaptive radar [C]∥Proceedings of National Radar Conference on Aerospace and Components. Syracuse, NY, US: IEEE,1997: 48-53.
[5]Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds [J]. IEEE Transactions on Signal Processing, 2005, 53 (6): 2101-2111.
[6]周宇,张林让,刘楠,等. 空时自适应处理中基于知识的训练样本选择策略[J]. 系统工程与电子技术, 2010, 32 (2):405-409.
ZHOU Yu, ZHANG Lin-rang, LIU Nan, et al. Knowledge aided secondary data selection in space time adaptive processing [J]. Systems Engineering and Electronics, 2010, 32 (2):405-409. (in Chinese)
[7]Yang X P, Liu Y X, Long T. Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing [J]. IET Radar, Sonar and Navigation, 2013, 7 (1):47-54.
[8]王珽,赵拥军. 知识辅助的机载MIMO雷达STAP非均匀样本检测方法[J]. 系统工程与电子技术, 2015, 37 (10):2260-2265.
WANG Ting, ZHAO Yong-jun. Knowledge-aided non-homogeneous samples detection method for airborne MIMO radar STAP [J]. Systems Engineering and Electronics, 2015, 37 (10):2260-2265. (in Chinese)
[9]Du W T, Liao G S, Yang Z W. Robust space time processing based on bi-iterative scheme of secondary data selection and PSWF method [J]. Digital Signal Processing, 2016, 52(C):64-71.

[10]KangS, Ryu J, Lee J, et al. Analysis of space-time adaptive processing performance using K-means clustering algorithm for normalisation method in non-homogeneity detector process [J]. IET Signal Processing, 2011, 5(2):113-120.
[11]高志奇,陶海红,赵继超. 基于S变换的机载雷达稳健空时自适应算法[J]. 系统工程与电子技术, 2016, 38(6):1268-1275.
GAO Zhi-qi, TAO Hai-hong, ZHAO Ji-chao. Robust space-time adaptive processing based on S transform for airborne radar [J]. Systems Engineering and Electronics, 2016, 38(6):1268-1275. (in Chinese)
[12]王强,张永顺,刘汉伟,等. 基于矩阵相似度的空时二维干扰检测方法[J]. 系统工程与电子技术, 2017, 39(2):259-262.
WANG Qiang, ZHANG Yong-shun, LIU Han-wei, et al. Interference detecting method for space-time two-dimension based on matrix similarity [J]. Systems Engineering and Electronics, 2017, 39 (2):259-262. (in Chinese)
[13]Wu Y F, Wang T, Wu J X, et al. Training sample selection for space-time adaptive processing in heterogeneous environments [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 691-695.
[14]Wu Y F, Wang T, Wu J X, et al. Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments [J]. IET Radar, Sonar and Navigation, 2015, 9 (7):778-782.
[15]Sun K, Meng H, Wang Y, Wang X. Direct data domain STAP using sparse representation of clutter spectrum [J]. Signal Processing, 2011, 91 (9): 2222-2236.
[16]姜磊,王彤. 基于子空间的阵元误差估计方法[J].系统工程与电子技术, 2014, 36(4): 656-660.
JIANG Lei, WANG Tong. Array error estimation using subspace-based approach[J]. Systems Engineering and Electronics, 2014, 36(4): 656-660. (in Chinese)
[17]刘汉伟,张永顺,王强,等. 基于稀疏重构的机载雷达训练样本挑选方法[J]. 系统工程与电子技术, 2016,38(7):1532-1537.
LIU Han-wei, ZHANG Yong-shun, WANG Qiang, et al. Training sample selection for airborne radar algorithm based on sparse reconstruction [J]. Systems Engineering and Electronics, 2016, 38 (7):1532-1537. (in Chinese)
[18]高志奇,陶海红,赵继超. 基于联合稀疏功率谱恢复的机载雷达稳健STAP算法研究[J]. 电子学报, 2016, 44 (11):2796-2801.
GAO Zhi-qi, TAO Hai-hong, ZHAO Ji-chao. Robust STAP algorithm based on joint sparse recovery of clutter spectrum for airborne radar [J]. Acta Electronica Sinica, 2016, 44 (11):2796-2801.(in Chinese)
[19]Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limiteddata using FOCUSS: a re-weighted minimum norm algorithm [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.
[20]朱轶昂. 稳健功率谱稀疏恢复空时自适应处理方法研究[D]. 深圳:深圳大学, 2017.
ZHU Yi-ang. Research on robust spatial-temporal spectrum recovery for space-time adaptive processing[D]. Shenzhen:ShenzhenUniversity, 2017.(in Chinese)
[21]ShnidmanD A. Expanded swerling target models [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059-1069.






第39卷第2期
2018年2月兵工学报ACTA
ARMAMENTARIIVol.39No.2Feb. 2018

490

Accesses

0

Citation

Detail

Sections
Recommended

/