Experiment and Simulation Prediction of Grinding Burn of Gear Steel 18Cr2Ni4WA

LIANG Zhi-qiang;HUANG Di-qing;ZHOU Tian-feng;LI Hong-wei;QIAO Zhi;WANG Xi-bin;LIU Xin-li

Acta Armamentarii ›› 2017, Vol. 38 ›› Issue (10) : 1995-2001. DOI: 10.3969/j.issn.1000-1093.2017.10.016
Paper

Experiment and Simulation Prediction of Grinding Burn of Gear Steel 18Cr2Ni4WA

  • LIANG Zhi-qiang1, HUANG Di-qing1, ZHOU Tian-feng1, LI Hong-wei1,2, QIAO Zhi1, WANG Xi-bin1, LIU Xin-li2
Author information +
History +

Abstract

18Cr2Ni4WA steel has been widely used to manufacture the heavy-duty gears, such as spiral bevel gear, which is characterized by high toughness and high strength. Grinding burn easily occurs due to the high temperature during grinding, which makes the grinding precision and surface quality difficult to meet the requirements. The surface hardness, hardness gradient and surface morphology of workpiece are analyzed through single factor experiment, and the degree of grinding burn is simulated using the finite element analysis software. The results show that, with the increase in grinding depth, the degree of grinding burn is aggravated, the color of oxide layer is changed from faint yellow to brown, and finally becomes cyan, and the surface morphology is changed from clear texture to heavily coated. The hardness of surface layer decreases and a tempered sorbite is produced due to tempering burn. The measured and simulated values of grinding burn depth are basically identical, which shows that the degree of grinding burn can be predicted by the finite element simulation. Key

Key words

surfaceandinterfaceofmaterials / grindingburn / gearsteel / microhardness / finiteelementanalysis

Cite this article

Download Citations
LIANG Zhi-qiang, HUANG Di-qing, ZHOU Tian-feng, LI Hong-wei, QIAO Zhi, WANG Xi-bin, LIU Xin-li. Experiment and Simulation Prediction of Grinding Burn of Gear Steel 18Cr2Ni4WA. Acta Armamentarii. 2017, 38(10): 1995-2001 https://doi.org/10.3969/j.issn.1000-1093.2017.10.016

References



[1]徐子健, 魏绍鹏, 周鹏, 等. 18Cr2Ni4WA钢真空渗碳后热处理工艺的优化[J]. 金属热处理, 2014, 39(9):32-35.
XU Zi-jian, WEI Shao-peng, ZHOU Peng, et al. Optimization of heat treatment process after vacuum carburizing of 18Cr2Ni4WA steel[J]. Heat Treatment of Metals, 2014, 39(9):32-35. (in Chinese)
[2]乔治, 梁志强, 赵文祥, 等. 齿轮钢30CrMnTi磨削强化试验[J].中国表面工程, 2017, 30(1):26-32.
QIAO Zhi, LIANG Zhi-qiang, ZHAO Wen-xiang, et al. Grinding hardening of 30CrMnTi gear steel[J]. China Surface Engineering, 2017, 30(1):26-32. (in Chinese)

[3]黄新春, 张定华, 姚倡锋, 等. 超高强度钢AerMet100磨削烧伤研究[J]. 机械工程学报, 2015, 51(9):184-190.
HUANG Xin-chun, ZHANG Ding-hua, YAO Chang-feng, et al. Research on the grinding burn of the ultrahigh strength steel AerMet100[J]. Journal of Mechanical Engineering, 2015, 51(9):184-190. (in Chinese)
[4]张红霞, 陈五一, 陈志同. SG砂轮磨削钛合金烧伤机理[J]. 北京航空航天大学学报, 2008, 34(1):22-26.
ZHANG Hong-xia, CHEN Wu-yi, CHEN Zhi-tong. Grinding burn mechanism of titanium alloys with SG wheels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1):22-26.(in Chinese)
[5]明兴祖, 李飞, 周静. 弧齿锥齿轮磨削表面烧伤建模仿真与实验验证[J]. 机械传动, 2014, 38(5):15-20.
MING Xing-zu, LI Fei, ZHOU Jing. Modeling simulation and experimental validation of grinding surface burn of spiral bevel gear[J]. Journal of Mechanical Transmission, 2014, 38(5):15-20. (in Chinese)
[6]DaiC, Ding W, Xu J, et al. Effects of undeformed chip thickness on grinding temperature and burn-out in high-efficiency deep grinding of Inconel718 superalloys[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(4):1841-1852.
[7]DingW, Linke B, Zhu Y, et al. Review on monolayer CBN superabrasive wheels for grinding metallic materials[J]. Chinese Journal of Aeronautics, 2017, 30(1):109-134.
[8]DingW F, Xu J H, Chen Z Z, et al. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5):1309-1315.
[9]郭力, 盛晓敏, 李波. 超高速深磨磨削表面烧伤的试验研究[J]. 精密制造与自动化, 2012(4):6-8.
GUO Li, SHENG Xiao-min, LI Bo. Experimental study on surface burn of ultra high speed deep grinding[J]. Precise Manufacturing & Automation, 2012(4):6-8. (in Chinese)

[10]关宏博, 陈磊, 张修铭, 等. 预应力干磨削加工40Cr工件表面微结构损伤[J]. 中国表面工程, 2016, 29(2):117-122.
GUAN Hong-bo, CHEN Lei, ZHANG Xiu-ming, et al. Surface micro-structure damage of 40Cr samples in pre-stressed dry grinding process[J].China Surface Engineering, 2016, 29(2):117-122.(in Chinese)
[11]WangZ, Willett P, Deaguiar P R, et al. Neural network detection of grinding burn from acoustic emission[J]. International Journal of Machine Tools & Manufacture, 2001, 41(2):283-309.
[12]Santa-AhoS, Vippola M, Sorsa A, et al. Development of bark hausen noise calibration blocks for reliable grinding burn detection[J]. Journal of Materials Processing Technology, 2012, 212(2): 408-416.
[13]Santa-AhoS, Vippola M, Sorsa A, et al. Optimized laser processing of calibration blocks for grinding burn detection with Barkhausen noise[J]. Journal of Materials Processing Technology, 2012, 212(11):2282-2293.
[14]任敬心, 华定安. 磨削原理[M]. 北京: 电子工业出版社, 2011: 242-243.
REN Jing-xin, HUA Ding-an. Grinding principle [M]. Beijing: Publishing House of Electronics Industry, 2011: 242-243. (in Chinese)
[15]RoweW B, Black S, Mills B, et al. Grinding temperatures and energy partitioning[J]. Proceedings of the Royal Society, 1997, 453(1):1083-1104.
[16]AndrewsK W. Empirical formulae for calculation of some transformation temperatures[J]. Journal of the Iron and Steel Institute, 1965, 203(7):721-72.





第38卷
第10期2017年10月兵工学报ACTA
ARMAMENTARIIVol.38No.10Oct.2017

458

Accesses

0

Citation

Detail

Sections
Recommended

/