Improved Coning and Sculling Error Compensation Algorithms Based on Dual Quaternion for Strapdown Inertial Navigation System

XING Li;XIONG Zhi;LIU Jian-ye;HANG Yi-jun

Acta Armamentarii ›› 2017, Vol. 38 ›› Issue (7) : 1336-1347. DOI: 10.3969/j.issn.1000-1093.2017.07.012
Paper

Improved Coning and Sculling Error Compensation Algorithms Based on Dual Quaternion for Strapdown Inertial Navigation System

  • XING Li, XIONG Zhi, LIU Jian-ye, HANG Yi-jun
Author information +
History +

Abstract

In order to improve the precision of the strapdown inertial navigation algorithm based on dual quaternion in the high dynamic environment, a trapezoid digital integral algorithm is applied to compensate the coning and sculling errors, which optimizes the attitude and velocity calculating algorithm and improves the calculating precision of the strapdown inertial navigation algorithm. During a sampling period of gyroscope and accelerometer, the angular rates of gyroscope outputs at previous and current times are both integrated by using the trapezoid digital integral algorithm, and the integral angle increment is used for the coning error compensation. The accelerometer outputs at previous and current times are integated by using the trapezoid digital integral algorithm, and the integral velocity increment and the integral angular increment are used for the sculling error compensation. Through thesimulation of multi-group dynamic tracks, it is shown that the improved coning and sculling error compensation algorithms adopting the trapezoid digital integration have higher navigation precision than the traditional rectangular digital integration method when the inputs are angular rate and acceleration. The dynamics of the track is higher, and the performance advantage of the improved algorithm is more obvious. The analysis and comparison of kinematic vehicle experimental results further verify the performance advantage of the proposed improved algorithm.Key

Key words

controlscienceandtechnology / dualquaternion / strapdowninertialnavigationalgorithm / coningerrorcompensationalgorithm / scullingerrorcompensationalgorithm / trapezoiddigitalintegralalgorithm

Cite this article

Download Citations
XING Li, XIONG Zhi, LIU Jian-ye, HANG Yi-jun. Improved Coning and Sculling Error Compensation Algorithms Based on Dual Quaternion for Strapdown Inertial Navigation System. Acta Armamentarii. 2017, 38(7): 1336-1347 https://doi.org/10.3969/j.issn.1000-1093.2017.07.012

References



[1]邢丽, 熊智, 刘建业, 等. 针对高动态载体应用的高精度捷联惯导姿态算法优化方法[J]. 中国惯性技术学报, 2014, 22(6): 701-706.
XING Li, XIONG Zhi, LIU Jian-ye, et al. Optimized method of high-precision attitude algorithm for high dynamic vehicles[J]. Journal of Chinese Inertial Technology, 2014, 22(6):701-706. (in Chinese)
[2]蒋郡祥, 于飞. 圆锥环境作为姿态算法优化环境的适用性分析[J]. 哈尔滨工程大学学报, 2016, 37(2):231-235.
JIANG Jun-xiang, YU Fei. Applicability of coning environment used as the environment for attitude algorithm design[J]. Journal of Harbin Engineering University, 2016, 37(2): 231-235.(in Chinese)
[3]IgnagniM B. Efficient class of optimized coning compensation algorithms[J]. Journal of Guidance Control & Dynamics, 2015, 19(2): 424-429.
[4]Song M, Wu W, Pan X. Approach to recovering maneuver accuracy in classical coning algorithms[J]. Journal of Guidance Control & Dynamics, 2013, 36(6):1872-1881.
[5]黄磊, 刘建业, 曾庆化. 基于高阶补偿模型的新圆锥算法[J]. 中国惯性技术学报, 2013, 21(1): 37-41.
HUANG Lei, LIU Jian-ye, ZENG Qing-hua. New coning algorithm based on high-order error compensation model[J]. Journal of Chinese Inertial Technology, 2013, 21(1):37-41. (in Chinese)
[6]Huang L, Liu J Y, Zeng Q H. Optimized strapdown coning correction algorithm[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(4):343-349.
[7]Titterton D, Weston J. Strapdown inertial navigation technology[M]. Stevenage, Hertfordshire, UK: the Institution of Electrical Engineers, 2004.
[8]王立冬, 刘军, 鲁军. 捷联惯导摇摆基座自对准中圆锥误差补偿算法[J]. 兵工学报, 2012, 33(7): 826-830.
WANG Li-dong, LIU Jun, LU Jun. Coning error compensation algorithm of SINS self-alignment on swaying base[J]. Acta Armamentarii, 2012, 33(7): 826-830. (in Chinese)
[9]汤传业, 陈熙源, 李建利. 一种角速率输入的圆锥算法设计[J]. 中国惯性技术学报, 2013, 21(4): 456-461.
TANG Chuan-ye, CHEN Xi-yuan, LI Jian-li. Coning algorithm design for angular rate inputs[J]. Journal of Chinese Inertial Technology, 2013,21(4): 456-461. (in Chinese)

[10]TangC, Chen X. A generalized coning correction structure for attitude algorithms[J]. Mathematical Problems in Engineering, 2014: 614378.
[11]Ben Y Y, Sun F, Gao W, et al. Generalized method for improved coning algorithms using angular rate[J]. IEEE Transactions on Aerospace & Electronic Systems, 2009, 45(4):1565-1572.
[12]Savage P G. Coning algorithm design by explicit frequency shaping[J]. Journal of Guidance Control & Dynamics, 2010, 33(4): 1123-1132.
[13]Roscoe K M. Equivalency between strapdown inertial navigation coning and sculling integrals/algorithms[J]. Journal of Guidance Control & Dynamics, 2001, 24(2):201-205.
[14]Wu Y X, Hu X P, Hu D W, et al. Strapdown inertial navigation system algorithms based on dual quaternions[J]. IEEE Transactions on Aerospace & Electronic Systems, 2005, 41(1):110-132.
[15]Wu Y X, Hu X P, Wu M P, et al. Strapdown inertial navigation using dual quaternion algebra: error analysis[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(1):259-266.
[16]Wang Z H, Chen X J, Zeng Q S. Comparison of strapdown inertial navigation algorithm based on rotation vector and dual quaternion[J]. Chinese Journal of Aeronautics, 2013, 26(2):442-448.
[17]Li K Z, Yuan J P, Yue X K. Autonomous navigation algorithm for spacecrafts based on dual quaternion[C]∥ 2nd International Conference on Space Information Technology. Wuhan, Hubei:SPIE, 2007.
[18]夏琳琳, 赵琳, 刘繁明, 等. 基于对偶四元数的航姿系统姿态更新算法研究[J]. 系统仿真学报, 2008, 20(2): 276-280.
XIA Lin-lin, ZHAO Lin, LIU Fan-ming, et al. Research on attitude updating algorithm based on dual quaternion for attitude and heading reference system[J]. Journal of System Simulation, 2008, 20(2): 276-280.(in Chinese)
[19]王立冬, 孟亚峰, 高庆. 基于角增量和角速率的旋转矢量算法的等效性[J]. 宇航学报, 2014, 35(3): 340-344.
WANG Li-dong, MENG Ya-feng, GAO Qing. Equivalence analysis of rotation vector algorithms based on angle increment and angular velocity[J]. Journal of Astronautics, 2014, 35(3): 340-344.(in Chinese)
[20]Hinedi S, Statman J I. High dynamic GPS Tracking, NASA-CR-184868[R]. Washington, DC, US: NASA, 1988.





第38卷
第7期2017年7月兵工学报ACTA
ARMAMENTARIIVol.38No.7Jul.2017

634

Accesses

0

Citation

Detail

Sections
Recommended

/