The Investigation into Burnishing ForceBurnishing Depth and Surface Morphology in Rotary Ultrasonic Burnishing

ZHAO Jian;WANG Bing;LIU Zhan-qiang

Acta Armamentarii ›› 2016, Vol. 37 ›› Issue (4) : 696-704. DOI: 10.3969/j.issn.1000-1093.2016.04.018
Paper

The Investigation into Burnishing ForceBurnishing Depth and Surface Morphology in Rotary Ultrasonic Burnishing

  • ZHAO Jian1,2, WANG Bing1,2, LIU Zhan-qiang1,2
Author information +
History +

Abstract

The effective burnishing time in rotary ultrasonic burnishing is determined with by analyzing machining mechanism and characteristics of rotary ultrasonic burnishing operation. The relationship between burnishing force and burnishing depth in rotary ultrasonic burnishing is firstly modelled based on the Hertz contact theory. The relational model is then applied to predict the burnishing force. Experiments of rotary ultrasonic burnishing of titanium alloy TC4 are carried out. The burnishing force is measured using a piezoelectric dynamometer, and the machined surface morphology is observed using a white light interferometer. The microstructure perpendicular to the surface of the ultrasonic burnished workpiece is observed under an optical microscope. The results demonstrate that there is a linear correlation between burnishing force and burnishing depth in rotary ultrasonic burnishing. The experimental results are in good agreement with the theoretical and predictive results. The correlation between burnishing force and surface morphology is discussed. The research results will be beneficial for the appropriate selection of burnishing depth.

Key words

machinofature technique and equipment / rotary ultrasonic burnishing force / burnishing depth / surface morphology

Cite this article

Download Citations
ZHAO Jian, WANG Bing, LIU Zhan-qiang. The Investigation into Burnishing ForceBurnishing Depth and Surface Morphology in Rotary Ultrasonic Burnishing. Acta Armamentarii. 2016, 37(4): 696-704 https://doi.org/10.3969/j.issn.1000-1093.2016.04.018

References

[1] 姜兴刚, 梁海彤, 卢慧敏, 等. 钛合金薄壁件超声椭圆振动铣削研究[J]. 兵工学报, 2014, 35(增刊1): 1891-1897.
JIANG Xing-gang, LIANG Hai-tong, LU Hui-min, et al. Investigation of ultrasonic elliptical vibration milling of thin-walled titanium alloy parts [J]. Acta Armamentarii, 2014, 35(S1): 1891-1897. (in Chinese)
[2] SinghR, Khamba J S. Investigation for ultrasonic machining of titanium and its alloys[J]. Journal of Materials Processing Technology, 2007, 183(2/3):363-367.
[3] Singh R, Khamba J S. Ultrasonic machining of titanium and its alloys: A review[J]. Journal of Materials Processing Technology, 2006, 173(2): 125-135.
[4] 李伦, 李淑娟, 汤奥斐, 等. 超声横向激励下轴向运动金刚石线锯振动切割分析[J]. 兵工学报,2014, 35(10): 1651-1658.
LI Lun, LI Shu-juan, TANG Ao-fei, et al. Vibration cutting analysis of axially moving diamond wire saw excited by transverse ultrasonic wave [J]. Acta Armamentarii, 2014, 35(10): 1651-1658. (in Chinese)
[5] Jatinder K, Khamba J S, Mohapatra S K. An investigation into the machining characteristics of titanium using ultrasonic machining[J]. International Journal of Machining and Machinability of Materials, 2008, 3(1/2): 143-161.
[6] 郑书友, 冯平法, 徐西鹏. 旋转超声加工技术研究进展[J]. 清华大学学报, 2009, 49(11): 1799-1804.
ZHENG Shu-you, FENG Ping-fa, XU Xi-peng. Development trends of rotary ultrasonic machining technology [J]. Journal of Tsinghua University, 2009, 49(11): 1799-1804. (in Chinese)
[7] Ya G, Qin H W, Yang S C, et al. Analysis of the rotary ultrasonic machining mechanism[J]. Journal of Materials Processing Technology, 2002, 129(1/2/3): 182-185.
[8] Churi N J, Pei Z J, Treadwell C. Rotary ultrasonic machining of titanium alloy: effects of machining variables[J]. Machining Science and Technology, 2006,10(3): 301-321.
[9] Huuki J, Sampsa V A L. Integrity of surfaces finished with ultrasonic burnishing[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 227(1): 45-53.
[10] Bozdana A T, Gindy N N Z, Li H. Deep cold rolling with ultrasonic vibrations—a new mechanical surface enhancement technique[J]. International Journal of Machine Tools and Manufacture, 2005, 45(6): 713-718.
[11] 李礼, 朱有利, 吕光义,等. TC4钛合金超声深滚表面强化技术的研究[J]. 材料工程,2008, 10(11): 68-74.
LI Li, ZHU You-li, LYU Guang-yi, et al. Study on ultrasonic deep rolling surface mechanical enhancement technique of TC4 titanium alloy [J]. Journal of Materials Engineering, 2008, 10(11):68-74. (in Chinese)
[12] 吕光义, 朱有利, 李礼,等. 超声深滚对TC4钛合金表面形貌和表面粗糙度的影响[J]. 中国表面工程, 2007, 20(4): 38-41.
LYU Guang-yi, ZHU You-li, LI Li, et al. The effect of ultrasonic deep rolling (UDR) on surface topography and surface roughness of TC4 titanium alloy[J]. China Surface Engineering, 2007, 20(4): 38-41. (in Chinese)
[13] Liu Y, Zhao X., Wang D. Effective FE model to predict surface layer characteristics of ultrasonic surface rolling with experimental validation[J]. Materials Science and Technology, 2013, 30(6):627-636.
[14] Masato O, Shohei S, Kei W, et al. Development and burnishing characteristics of roller burnishing method with rolling and sliding effects[J]. Journal of Mechatronics, 2015, 29(1): 110-118.
[15] Johnson K L. Contact mechanics[M]. England: the University of Cambridge, 1985.
[16] Seemikeri C Y, Brahmankar P K, Mahagaonkar S B. Some studies on design and performance analysis of a new low plasticity burnishing tool[J]. International Journal of Machining and Machinability of Materials, 2008, 4(2/3): 237-251.
[17] 王婷, 王东坡, 沈煜,等. 超声表面滚压加工参数对40Cr表面粗糙度的影响[J]. 天津大学学报, 2009, 42(2): 168-172.
WANG Tin, WANG Dong-po, SHEN Yu, et al. Effect of ultrasonic surface rolling processing parameters on 40Cr surface roughness[J]. Journal of Tianjin University, 2009, 42(2): 168-172. (in Chinese)
[18] Maximov J T, Duncheva G V, Amudjev I M, et al. A new single-roller burnishing technique decreasing roughness obtained[J]. Journal of Materials Science and Engineering with Advanced Technology, 2010, 2(2): 177-201.
[19] Low K O, Wong K J. Tribological effects of polymer surface modification through plastic deformation[J]. Indian Academy of Sciences, 2011, 34(7): 1549-1555.
[20] Balland P, Tabourot L, Degre F, et al. Mechanics of the burnishing process[J]. Precision Engineering, 2013, 37(1): 129-134.
[21] Balland P, Tabourot L, Degre F, et al. An investigation of the mechanics of roller burnishing through finite element simulation and experiments[J]. International Journal of Machine Tools and Manufacture, 2013, 65(1): 29-36.
[22] Travieso J A, Dessein G, Rojas H A. Improving the surface finish of concave and convex surfaces using a ball burnishing process[J]. Materials and Manufacturing Processes, 2011, 26(12): 1494-1502.
[23] Gharbi F, Sghaier S, Hamdi H, et al. Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device[J]. International Journal of Advanced Manufacture Technology, 2012, 60(1): 87-99.

476

Accesses

0

Citation

Detail

Sections
Recommended

/