Multichannel Radar Signal Recognition Algorithm Based on DCS

WANG Hong-wei;FAN Xiang-yu;CHEN You;YANG Yuan-zhi

Acta Armamentarii ›› 2016, Vol. 37 ›› Issue (4) : 661-669. DOI: 10.3969/j.issn.1000-1093.2016.04.013
Paper

Multichannel Radar Signal Recognition Algorithm Based on DCS

  • WANG Hong-wei1, FAN Xiang-yu2, CHEN You2, YANG Yuan-zhi2
Author information +
History +

Abstract

Recognizing the radar signal in complex electromagnetic environment is the necessary prerequisite for electronic countermeasures to play a role. The priori information about signal modulation and signal parameter is limited, which cannot provide enough intelligence support for signal sorting. In addition, the mixture of signals restricts the effectiveness of signal sorting. The issue mentioned above is converted to a blind source separation. A high-order disjunction matrix is established with Givens transform, and the blind source separation algorithm with degree of cyclostationarity (DCS) based on the third-order cyclic statistics which is suitable for two channel signals is expanded to the multichannel signals with different cyclostationarity frequencies. The feasibility of the proposed method is proved by theoretical derivation, and the method for establishing the parameters of Givens matrix is derived. The features of radar signal in cyclostationary domain are extracted with cyclostationarity theory. The method is simulated with DCS separation principles. The simulated results show that the algorithm can realize the effective sorting of multichannel radar signals.

Key words

radar engineering / signal recognition / cyclostationarity frequency / Givens matrix / DCS blind source separation algorithm / multichannel signal

Cite this article

Download Citations
WANG Hong-wei, FAN Xiang-yu, CHEN You, YANG Yuan-zhi. Multichannel Radar Signal Recognition Algorithm Based on DCS. Acta Armamentarii. 2016, 37(4): 661-669 https://doi.org/10.3969/j.issn.1000-1093.2016.04.013

References

[1] LatombeG, Granger E, Dilkes F A. Fast learning of grammar production probabilities in radar electronic support[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1262-1289.
[2] Yang Z, Wu Z, Yin Z, et al. Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine.[J]. Sensors, 2013, 13(13):848-864.
[3] Bezousek P, Schejbal V. Radar technology in the Czech Republic[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(8):27-34.
[4] Yin Z, Yang W, Yang Z, et al. A study on radar emitter recognition based on SPDS neural network[J]. Information Technology Journal, 2011, 10(4): 883-888.
[5] Swiercz E. Automatic classification of LFM signals for radar emitter recognition using wavelet decomposition and LVQ classifier[J].Acta Physica Polonica A, 2011, 119(4):488-494.
[6] Ren M Q, Cai J Y, Zhu Y Q, et al. Radar emitter signal classification based on mutual information and fuzzy support vector machines[C]∥Proceedings of International Conference on Software Process. Beijing: IEEE, 2008:1641-1646.
[7] 关欣,孙迎丰,何友. 不完备信息系统的辐射源识别方法研究[J].电子科技大学学报,2008,37(1):8-11.
GUAN Xin, SUN Ying-feng, HE You. Study on emitter recognition to incomplete information system[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(1): 8-11.(in Chinese)
[8] 张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J]. 西安交通大学学报,2005,39(8):872-875.
ZHANG Ge-xiang, JIN Wei-dong, HU Lai-zhao. Radar emitter signal recognition based on rough set theory[J]. Journal of Xi’an Jiaotong University, 2005, 39(8):872-875.(in Chinese)
[9] 林云,司锡才,周若琳,等. 改进灰色关联算法在辐射源识别中的应用[J].通信学报,2010,31(8A):166-171.
LIN Yun, SI Xi-cai, ZHOU Ruo-lin,et al. Application of improved grey correlation algorithm on radiation source recognition[J].Journal on Communications,2010,31(8A):166-171. (in Chinese)
[10] HeZ, Shen Y, Wang Q,et al. Mitigating end effects of EMD using non-equidistance grey model[J]. Journal of Systems Engineering and Electronics.2012, 23(4): 603-611.
[11] 李楠,曲长文,苏峰,等.雷达辐射源模糊识别算法改进[J].电子科技大学学报,2010,39(2):182-185.
LI Nan, QU Chang-wen, SU Feng, et al. Improved radar emitter fuzzy identification algorithm[J]. Journal of University of Electronic Science and Technology of China, 2010,39(2):182-185.(in Chinese)
[12] Wang J G. Emitter target recognition based on multi-sensor data fusion of ESM and IR[C]∥The 9th International Conference on Signal Processing Proceedings. Hefei: Electronic Engineering Institute, 2008: 1508-1511.
[13] 周宪英,张怀巍,关欣.基于灰度量空间的辐射源识别方法[J].计算机与数字工程,2013,41(2):192-195.
ZHOU Xian-ying, ZHANG Huai-wei, GUAN Xin. A GMS-based emission source identification method[J]. Computer & Digital Engineering, 2013, 41(2):192-195.(in Chinese)
[14] 黄知涛,周一宇,姜文利,等.循环平稳信号的处理与应用[M]. 北京:科学出版社,2006.
HUANG Zhi-tao, ZHOU Yi-yu,JIANG Wen-li,et al.Processing and application of cyclostationary signal[M]. Beijing: Science Press, 2006.(in Chinese)
[15] 汤辉,王殊.基于去噪盲分离的多个直扩信号参数估计[J].系统工程与电子技术,2011,33(8):1722-1726.
TANG Hui,WANG Shu. Parameters estimation of DSSS based on denoising source separation[J]. Systems Engineering and Electronics, 2011, 33(8):1722-1726.(in Chinese)
[16] 于宁宇,马红光,石荣,等.基于二阶循环统计量的BPSK参数估计[J].系统工程与电子技术,2011,33(9):2117-2121.
YU Ning-yu, MA Hong-guang,SHI Rong, et al. Parameter estimation of BPSK via second-order cyclic statistics[J]. Systems Engineering and Electronics, 2011, 33(9):2117-2121.(in Chinese)
[17] 李灯熬,赵菊敏. 循环平稳理论的盲源分离算法[M]. 北京:国防工业出版社,2015.
LI Deng-ao, ZHAO Ju-min. Blind source separation principles and algorithms based on cyclostationary theory[M]. Beijing: National Defense Industry Press,2015.(in Chinese)
[18] Bi G, Chen J, He J, et al. Application of degree of cyclostationarity in rolling element bearing diagnosis[J]. Key Engineering Materials, 2005, 293/294:347-354.
[19] Zhao J M, Li D A, Zhang H Y. Second order blind source separation algorithm[J]. Journal of Computational Systems, 2011,7(3): 979-983.
[20] Liu H Y, Zhao J M, Li Deng A. Single guide league ventricular late potentials extraction based on signal correlation[J]. Journal of Information and Computational Science, 2013,10(14):4673-4680.

386

Accesses

0

Citation

Detail

Sections
Recommended

/