Effect of Functional Agents on the Performance of 2, 4-dinitroanisole-based Melt-cast Explosives

MENG Jun-jiong;JIANG Zhen-ming;ZHANG Xiang-rong;ZHOU Lin

Acta Armamentarii ›› 2016, Vol. 37 ›› Issue (3) : 424-430. DOI: 10.3969/j.issn.1000-1093.2016.03.006
Paper

Effect of Functional Agents on the Performance of 2, 4-dinitroanisole-based Melt-cast Explosives

  • MENG Jun-jiong1, JIANG Zhen-ming2, ZHANG Xiang-rong1, ZHOU Lin1
Author information +
History +

Abstract

In order to obtain the system of functional agents for 2,4-dinitroanisole(DNAN)-based melt-cast explosives and improve the performance of its charge, Tween 60 and cellulose acetate butyrate(CAB)are chosen as the preferred agents according to the calculated works of adhesion. The influences of functional agents on tensile strength, shear strength, impact sensitivity, friction sensitivity, shock sensitivity and charge density of DNAN 20/HMX 80 melt-cast explosive are analyzed by using Brazil test, static shear test, determination of friction sensitivity-explosion probability method, determination of impact sensitivity-explosion probability method, small scale gap test and hydrostatic weighing method. The results show that, when 1wt% Tween 60 and 1wt% CAB are added in DNAN 20/HMX 80 melt-cast explosive, its tensile strength is increased by 6.25%,10.3% and 47.8% at -40 ℃, 20 ℃ and 60 ℃, respectively; its shear strength are increased by 23.5%,27.8% and 45.1% at -40 ℃, 20 ℃ and 60 ℃,respectively;its friction sensitivity, impact sensitivity and shock sensitivity are decreased by 14.29%, 4.76% and 3.11%, respectively;and its relative density is increased by 0.2%. Therefore, Tween 60 and CAB can be used to improve the mechanical properties and safety performance of DNAN-based melt-cast explosives.

Key words

ordnance science and technology / 2,4-dinitroanisole / functional agent / adhesion work / performance test

Cite this article

Download Citations
MENG Jun-jiong, JIANG Zhen-ming, ZHANG Xiang-rong, ZHOU Lin. Effect of Functional Agents on the Performance of 2, 4-dinitroanisole-based Melt-cast Explosives. Acta Armamentarii. 2016, 37(3): 424-430 https://doi.org/10.3969/j.issn.1000-1093.2016.03.006

References

[1] 董海山. 钝感弹药的由来及重要意义[J].含能材料,2006,14(5): 321-322.
DONG Hai-shan. The reason and significance of insensitive munitions[J]. Chinese Journal of Energetic Material,2006, 14(5):321-322.(in Chinese)
[2] 张光全,董海山. 2,4-二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料,2010,18(5):604-609.
ZHANG Guang-quan, DONG Hai-shan. Review on melt-castable explosives based on 2, 4-dinitroanisole[J]. Chinese Journal of Energetic Material, 2010, 18(5): 604-609.(in Chinese)
[3] XingX L, Zhao F Q, Ma S N, et al. Specific heat capacity, thermal behavior, and thermal hazard of 2, 4-dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2):179-182.
[4] Schechter M S, Haller H L. Colorimetric determination of 2, 4-dinitroanisole[J]. Industrial and Engineering Chemistry Analytical Edition, 1944,16(5):325-326.
[5] Trzciński W A, Cudzio S, Dyjak S, et al. A comparison of the sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3):443-455.
[6] Cuddy M F, Poda A R, Chappell M A. Estimations of vapor pressures by thermogravimetric analysis of the insensitive munitions IMX-101, IMX-104, and individual components[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(2): 236-242.
[7] Chow T M, Wilcoxon M R, Piwoni M D,et al. Analysis of new generation explosives in the presence of US EPA method 8330 energetic compounds by high-performance liquid chromatography[J]. Journal of Chromatographic Science, 2009, 47(1):40-43.
[8] Walsh M R, Walsh M E, Taylor S, et al. Characterization of PAX-21 insensitive munition detonation residues[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3):399-409.
[9] Ahn S C, Cha D K, Kim B J, et al. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate[J]. Journal of Hazardous Materials, 2011, 192(2):909-914.
[10] DaviesP J, Provatas A. Characterisation of 2, 4-dinitroanisole: an ingredient for use in low sensitivity melt cast formulations, DSTO-TR-1904[R]. Australian:Defence Science and Technology Organization, 2006.
[11] Pelletier P, Lavigne D, Laroche I, et al.Additional properties studies of DNAN based melt-pour explosive formulations[C]∥Insensitive Munitions & Energetic Materials Technology Symposium. Munich, Germany:NDIA,2010.
[12] Davies P J, Provatas A. DNAN: a replacement for TNT in melt-cast formulations[C]∥Insensitive Munitions & Energetic Materials Technology Symposium. Munich, Germany:NDIA,2010.
[13] Boddu V M, Abburi K, Maloney S W, et al. Thermophysical properties of an insensitive munitions compound, 2, 4-dinitroanisole[J]. Journal of Chemical Engineering,2008, 53(5):1120-1125.
[14] 王红星,王晓峰,罗一鸣,等. DNAN炸药的烤燃实验[J]. 含能材料,2009,17(2):183-186.
WANG Hong-xing, WANG Xiao-feng, LUO Yi-ming, et al. Cook-off test of DNAN explosive[J]. Chinese Journal of Energetic Material, 2009, 17(2):183-186.(in Chinese)
[15] 马卿,舒远杰,罗观,等. TNT基熔铸炸药:增韧增弹的途径及作用[J].含能材料,2012,20(5):618-629.
MA Qing,SHU Yuan-jie,LUO Guan,et al. Toughening and elasticizing route of TNT based melt cast explosives[J]. Chinese Journal of Energetic Material, 2012,20(5):618-629. (in Chinese)
[16] 高大元,蓝林钢,温茂萍,等. 改性B炸药的力学性能[J]. 含能材料,2014,22(3):259-364.
GAO Da-yuan, LAN Lin-gang, WEN Mao-ping, et al. Mechanical properties of modified composition B[J]. Chinese Journal of Energetic Material, 2014, 22(3):259-364. (in Chinese)
[17] 何得昌,徐军培,柴皓,等. 功能助剂对TNT成型性能的影响[J].火炸药学报,2000(3):41-42.
HE De-chang,XU Jun-pei,CHAI Hao, et al. The effect of additives on the forming properties of TNT[J]. The Chinese Journal of Explosives & Propellants, 2000(3):41-42.(in Chinese)
[18] 黄亨建,董海山,张明,等. 功能助剂与RDX的界面作用及对撞击感度的影响研究[J]. 爆炸与冲击,2002,23(2):169-172.
HUANG Heng-jian,DONG Hai-shan, ZHANG Ming, et al. A study on the interface action between RDX and desensitizers and related effects on impact sensitivity[J]. Explosion and Shock Waves, 2002, 23(2):169-172.(in Chinese)
[19] Giese R F, Costanzo P M, Van Oss C J. The surface free energies of talc and pyrophyllite[J]. Physics and Chemistry of Minerals, 1991, 17(7):611-616.
[20] Van Oss C J, Giese R F. The hydrophilicity and hydrophobicity of clay minerals[J]. Clays and Clay Minerals, 1995, 43(4):474-477.
[21] Holysz L. The effect of thermal treatment of silica gel on its surface free energy components[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134(3):321-329.
[22] Holysz L. Surface free energy interactions of a ‘thermisil’ glass surface-a comparison of the thin layer wicking and contact angle

techniques[J]. Adsorption Science and Technology, 1996,14(2): 89-100.
[23] Siebold A, Walliser A, Nordin M,et al. Capillary rise for thermodynamic characterization of solid particle surface[J]. Journal of Colloid and Interface Science, 1997, 186(1):60-70.
[24] Berenbaum R, Brodie I. Measurement of the tensile strength of brittle materials[J]. British Journal of Applied Phyics, 1959, 10(6): 281-286.
[25] Field J E, Parry M A, Palmer S J P, et al. Deformation and explosive properties of HMX powders and polymer bonded explosives[C]∥Proceedings of 9th Symposium (International) on Detonation. Portland, Oregon, US: Office of Naval Research, 1989:886-896.
[26] Palmer S J P, Field J E, Huntley J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society of London, 1993, 440(1909):399-419.
[27] Goldrein H T, Huntley J M, Palmer S J P, et al. Optical techniques for strength studies of ploymer bonded explosives[C]∥Proceedings of 10th International Detonation Symposium. Boston, US: Office of Naval Research,1995:525-535.
[28] Schrader E M. Young-Dupre revisited[J]. Langmuir, 1995, 11(9): 3585-3589.

499

Accesses

0

Citation

Detail

Sections
Recommended

/