Research on Melted and Rapidly Solidified Layer on the Surface of Crater Penetrated by Long Tungsten Rod

LUO Rong-mei;HUANG De-wu;YANG Ming-chuan;HUANG Hai;LI Fu-ying

Acta Armamentarii ›› 2015, Vol. 36 ›› Issue (7) : 1167-1175. DOI: 10.3969/j.issn.1000-1093.2015.07.003
Paper

Research on Melted and Rapidly Solidified Layer on the Surface of Crater Penetrated by Long Tungsten Rod

  • LUO Rong-mei1,2, HUANG De-wu2, YANG Ming-chuan2, HUANG Hai3, LI Fu-ying3
Author information +
History +

Abstract

A thin surface layer, called melted and rapidly solidified layer, is formed when tungsten long rod penetrates into armor at high velocity. When the 30CrMnMo target is shot by a small caliber long rod armor piercing projectile at 0°angle, a crater is formed on the target. In order to investigate the morphology characteristics and forming mechanism of MRSL, the surface of the crater is observed by scanning electronmicroscopy and analyzed by energy spectrum. LS-DYNA is used to simulate the temperature field of the interaction area between penetrator and target. It is shown that MRSL consists of W, Ni and Fe elements, which are contained in long rod material, and Fe, Cr and Mn elements, which are contained in target material. In MRSL, tungsten grains have two kinds of size: the big one is of long and flat shape, and its length is in the range from several micrometers to dozens of micrometers; the small one is dispersed in matrix with 100~400 nm in diameter. The mass consumption of long rod head is happened in the form of “melted and broken”.

Key words

ordnance science and technology / armor piercing / interaction area between penetrator and target / melted and broken mass consumption / melted and rapidly solidified layer

Cite this article

Download Citations
LUO Rong-mei, HUANG De-wu, YANG Ming-chuan, HUANG Hai, LI Fu-ying. Research on Melted and Rapidly Solidified Layer on the Surface of Crater Penetrated by Long Tungsten Rod. Acta Armamentarii. 2015, 36(7): 1167-1175 https://doi.org/10.3969/j.issn.1000-1093.2015.07.003

References

[1] 赵国志. 穿甲工程力学[M].北京:兵器工业出版社,1992.
ZHAO Guo-zhi. Engineering mechanics[M]. Beijing:Publishing House of Ordnance Industry,1992.(in Chinese)
[2] 张国伟,徐立新,张秀艳. 终点效应及靶场试验[M].北京:北京 理工大学出版社,2009.
ZHANG Guo-wei, XU Li-xin, ZHANG Xiu-yan. Terminal ballistics effects and range test[M]. Beijing: Beijing Institute of Technology Press,2009.(in Chinese)
[3] Hazell P J, Appleby-Thomas G J, Philbey D, et al. The effect of gilding jacket material on the penetration mechanics of a 7.62 mm armour-piercing projectile[J]. International Journal of Impact Engineering, 2013, 54(4):11-18.
[4] Ning J, Ren H, Guo T, et al. Dynamic response of alumina ceramics impacted by long tungsten projectile[J]. International Journal of Impact Engineering, 2013, 62(24):60-74.
[5] BalakrishnanM, Balasubramanian V, Reddy G M. Effect of hardfacing consumables on ballistic performance of Q & T steel joints[J]. Defence Technology, 2013, 9(4):249-258.
[6] Pizaa C, Murr L, Baquera M T, et al. Solid-state flow, mechanical alloying, and melt-related phenomena for [0 0 1]. single-crystal W ballistic rod penetrators interacting with steel targets[J]. Materials Science & Engineering A, 2006, 428(1):301-313.
[7] Chen X W, Wei L M, Li J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target[J]. International Journal of Impact Engineering, 2015,79:102-116.
[8] 朱张校,姚可夫. 工程材料[M]. 北京:清华大学出版社,2000.
ZHU Zhang-xiao, YAO Ke-fu. Engineering materials[M]. Beijing: Tsinghua University Press,2000.(in Chinese)
[9] Gerlach U. Microstructural analysis of residual projectiles—a new method to explain penetration mechanisms[J]. Metallurgical & Materials Transactions A, 1986, 17(3):435-442.
[10] SenthilP P, Singh B B, Kumar K S, et al. Effect of heat treatment on ballistic performance of an armour steel against long rod projectile[J]. International Journal of Impact Engineering, 2015, 80:13-23.
[11] Zhou X, Li S, Liu J, et al. Self-sharpening behavior during ballistic impact of the tungsten heavy alloy rod penetrators processed by hot-hydrostatic extrusion and hot torsion[J]. Materials Science & Engineering A, 2010, 527(18):4881-4886.
[12] Mishra B, Ramakrishna B, Jena P K, et al. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact[J]. Materials & Design, 2013,43:17-24.
[13] 段占强,丛美华,苏会和,等. 45#钢高速冲击穿孔的显微组织[J]. 材料研究学报,2001,15(4):403-408.
DUAN Zhan-qiang, CONG Mei-hua, SU Hui-he, et al. Microstructure investigation of the penetration bore of 45# steel in high speed impacting [J]. Chinese Journal of Materials Research, 2001,15(4):403-408. (in Chinese)
[14] 段占强,程国强,李守新,等. 高速冲击下钢板的微观组织及绝热剪切带[J].金属学报,2003,39(5):486-492.
DUAN Zhan-qiang, CHENG Guo-qiang, LI Shou-xin, et al. Microstructures and adiabatic shear bands formed in steel plate under high rate impact[J].Acta Metallurgica Sinica, 2003,39(5):486-492. (in Chinese)
[15] Duan Z Q, Li S X, Huang D W. Microstructures and adiabatic shear bands formed by ballistic impact in steels and tungsten alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(12):1119-1126.
[16] 丛 美华,黄德武,段占强,等. 小口径穿甲试验靶板弹孔和残余 弹体显微组织研究[J]. 北京理工大学学报, 2002, 22(5): 594-598.
CONG Mei-hua, HUANG De-wu,DUAN Zhan-qiang, et al. Microstructural analysis of the target surface and the residual projectile in an experimental penetration of small diameter[J]. Journal of Beijing Institute of Technology, 2002,22(5): 594-598. (in Chinese)
[17] 李金泉,黄德武, 段占强, 等. 穿甲试验靶板弹孔微观结构和绝热剪切带特性[J]. 北京科技大学学报,2003,25(6):545- 549.
LI Jin-quan, HUANG De-wu, DUAN Zhan-qiang, et al. Microstructure near the penetrated hole in an experimental penetration target and characteristics of the adiabatic shear band[J]. Journal of University of Science and Technology Beijing, 2003,25(6):545-549.(in Chinese)
[18] 李金泉, 黄德武, 段占强, 等. 穿甲靶板弹孔微观结构观察及侵彻过程分析[J].材料科学与工艺, 2009, 17(3): 377-380.
LI Jin-quan, HUANG De-wu, DUAN Zhan-qiang, et al. Microstructure near the penetrated hole in an experimental penetra tion target and analysis of penetrating process[J]. Materials Science & Technology. 2009, 17(3): 377-380.(in Chinese)
[19] 荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象[J]. 爆炸与冲击, 2009,29(4):351-356.
RONG Guang, HUANG De-wu. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration[J]. Explosion and Shock Waves, 2009,29(4):351-356. (in Chinese)
[20] 王猛,黄德武,荣光,等.装甲板弹坑底部冠状裂纹的观测与分析[J].兵工学报, 2009,30(12):1579-1584.
WANG Meng,HUANG De-Wu, RONG Guang, et al. Observation and analysis of coronary cracks beneath the crater in armor-plate[J]. Acta Armamentarii, 2009,30(12):1579-1584. (in Chinese)
[21] Rong G, Huang D W, Yang M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers[J]. Theoretical & Applied Fracture Mechanics, 2012, 58(1):21-27.
[22] 范景莲. 钨合金及制备新技术[M]. 北京:冶金工业出版社,2006.
FAN Jing-lian. Tungsten alloy and new preparation technology[M].Beijing: Metallurgical Industry press 2006. (in Chinese)
[23] RyuH J,Hong S H,Baek W H. Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys[J]. Materials Science & Engineering A, 2000, 291(1):91-96.
[24] 祝志祥, 程兴旺, 才鸿年. 高侵彻性能钨合金研究进展[J]. 兵器材料科学与工程,2006,29(6):69-72.
ZHU Zhi-xiang, CHENG Xing-wang, CAI Hong-nian. Research progress in high penetration performance of tungsten heavy alloys[J]. Ordnance Material Science and Engineering, 2006,29(6):69-72. (in Chinese)
[25] James S. Wi beck, Charles E. A short course on penetration mechanics [M]. Houston: SouthwestResearch Institute, 1987.
[26] 崔忠圻. 金属学与热处理[M]. 北京:机械工业出版社,2000.
CUI Zhong-qi. Metallurgy and heat treatment [M]. Beijing: China Machine Press, 2000. (in Chinese)
[27] 杨超,张宝平,李灿波. 侵彻过程中穿甲弹温升机制的研究[J]. 兵器材料科学与工程,2003,26(1):29-43.
YANG Chao, ZHANG Bao-ping, LI Can-bo.Study of temperature rise mechanism in penetrator during penetration [J], Ordnance Material Science and Engineering, 2003,26(1):29-43. (in Chinese)

548

Accesses

0

Citation

Detail

Sections
Recommended

/