Study of Shock-induced Polycrystalline Iron Phase Transition with DEM

LIU Chao;SHI Yi-na;QIN Cheng-sen;LIANG Xian-hong

Acta Armamentarii ›› 2014, Vol. 35 ›› Issue (7) : 1009-1015. DOI: 10.3969/j.issn.1000-1093.2014.07.011
Paper

Study of Shock-induced Polycrystalline Iron Phase Transition with DEM

  • LIU Chao, SHI Yi-na, QIN Cheng-sen, LIANG Xian-hong
Author information +
History +

Abstract

Numerical simulations on α-iron and polycrystalline iron are conducted using discrete element method (DEM) combined with undiffused two-phase transition model, thermodynamic consistent free energy function, and phase transition kinetics of relaxation equation. The phase boundary and Hugoniot relation are obtained through numerical simulation. The simulation result of polycrystalline iron shows that the shock-front irregularities rise when the propagation distance of shock wave increases; and the shock-front is more irregular in the coarse grain model than in the fine grain model; the phase transitions in the polycrystalline are heterogeneous, and the transitions are observed first along grain boundaries. The curve of local average pressure and transformed mass fraction is obtained.

Key words

explosion mechanics / shock-induced phase transition / discrete element method / polycrystal

Cite this article

Download Citations
LIU Chao, SHI Yi-na, QIN Cheng-sen, LIANG Xian-hong. Study of Shock-induced Polycrystalline Iron Phase Transition with DEM. Acta Armamentarii. 2014, 35(7): 1009-1015 https://doi.org/10.3969/j.issn.1000-1093.2014.07.011

References

[1] BancroftD, Peterson E L, Minshall S. Polymorphism of iron at high pressure[J]. J Appl Phys, 1956, 27(3): 291-298.
[2] CundallP A. A computer model for simulating progressive large scale movement in block rock system[C]∥Symposium ISRM. Nancy, France: International Society of Rock Mechnics, 1971: 129-136.
[3]SawamotoY, Tsubota H, Kasai Y, et al. Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method [J]. Nucl Eng Des, 1998, 179: 157- 177.
[4] 刘凯欣,高凌天,郑文刚. 混凝土动态破坏过程的数值模拟[J]. 工程力学, 2000(增刊):470-474.
LIU Kai-xin, GAO Ling-tian, ZHENG Wen-gang. Numerical si-mulationfor the concrete failure process under shock loading [J]. Engineering Mechanics, 2000(Suppl)470-474. (in Chinese)
[5] 刘凯欣,高凌天. 离散元法在求解三维冲击动力学问题中的应用[J]. 固体力学学报, 2004, 25(2): 181-185.
LIU Kai-xin, GAO Ling-tian. The application of discrete element method in solving three-dimensional impact dynamics problems [J]. Acta Mechanica Solida Sinica, 2004, 25(2): 181-185. (in Chinese)
[6] YanoK, Horie Y. Discrete-element modeling of shock compression of polycrystalline copper [J]. Phys Rev B, 1999, 59: 13672-13680.
[7] CaseS, Horie Y. Mesomechanics of the α-δ transition in iron [J]. J Mech Phys Solids, 2007, 55: 589-614.
[8] 王文强. 离散元方法及其在材料和结构力学响应分析中的应用[D]. 合肥. 中国科学技术大学,2000.
WANG Wen-qiang. Discrete element method and its use in analysis of response of materials and structures [D]. Hefei: University of Science and Technology of China, 2000. (in Chinese)
[9] 于继东, 王文强, 刘仓理, 等. 炸药冲击响应的二维细观离散元模拟[J]. 爆炸与冲击, 2008, 28(6): 488-493.
YU Ji-dong, WANG Wen-qiang, LIU Cang-li,et al. Two-dimensional mesoscale discrete element simulation of shock response of explosives [J]. Explosion and Shock Waves, 2008, 28(6): 488-493. (in Chinese)
[10] TangZ P, Horie Y, Psakhie S G. Discrete meso-element modeling of shock processes in powders[C]∥High Pressure Shock Compression of Solids Ⅳ, Response of Highly Porous Solid to Shock Loading. N Y: Springer, 1997: 143-176.
[11] YanoK, Horie Y. Mesomechanics of the α-ε transition in iron[J]. International Journal of Plasticity, 2002, 18: 1427-1446.
[12] ForbesJ W. Experimental investigation of the kinetics of the shock-induced alpha to epsilon phase transformation in armco iron,WSU-SDL 76-01[R]. Pullman, Washington: Washington State University, 1976: 112-120.
[13] AndersonO L. Equations of state of solids for geophysics and ceramic science[M]. New York: Oxford University, 1995: 195.
[14] LideD R, Kehiaian H V. CRC handbook of thermophysical and thermodynamical data [M]. US: CRC,1994: 136.
[15] JephcoatA P, Mao H K, Bell P M. The static compression of ironto 78 GPa with rare gas solids as pressure-transmitting media[J]. J Geophys Res, 1986, 91: 4677-4684.
[16] GilesP M, Longenbach M H, Marder A R. High-pressure α-ε martensitic transformation in iron [J]. J Appl Phys, 1971, 42(11):4290-4295.
[17] BundyF P. Pressure-temperature phase diagram of iron to 200 kbar,900 ℃ [J]. J Appl Phys, 1965, 36(2): 616-620.
[18] KennedyG C, Newton R C. Solids under pressure [M]. New York, McGrawHill, 1963: 163.
[19] CloughertyE V, Kaufman L. High pressure measurement [M]. Washington, Giadini A A, Lloyd E C, 1963: 152.
[20] BarkerL M, Hollenbach R E, Shock wave study of the αTMε phase transition in iron [J]. J Appl Phys, 1974, 45: 4872-4887.
[21] BrownJ M, Fritz J N, Hixson R S. Hugoniot data for iron [J]. J Appl Phys, 2000, 88: 5496-5498.
[22] WallaceD C. Irreversible thermodynamics of flow in solids [J]. Phys Rev B, 1980, 22(4): 1477-1486.
[23] MeyersM A , Carvalho M S. Shock-front irregularities in polycrystalline metals [J]. Mater Sci Eng, 1976, 24: 131-135.
[24] TaylorR D, Pasternak M P, Jeanloz R. Hysteresis in the high pressure transformation of bcc-to hcp-iron [J].J Appl Phys, 1991, 69(8): 6126-6128.
[25] BoettgerJ C, Wallace D C. Metastability and dynamics of the shock-induced phase transition in iron [J]. Phys Rev B, 1997, 55: 2840-2849.

Accesses

Citation

Detail

Sections
Recommended

/