DOA Estimation of Wideband Linear Frequency Modulated Pulse Signals Based on Fractional Fourier Transform

WANG Rui;MA Yan

Acta Armamentarii ›› 2014, Vol. 35 ›› Issue (3) : 421-427. DOI: 10.3969/j.issn.1000-1093.2014.03.020
Research Notes

DOA Estimation of Wideband Linear Frequency Modulated Pulse Signals Based on Fractional Fourier Transform

  • WANG Rui, MA Yan
Author information +
History +

Abstract

A new method for a center frequency estimation based on fractional Fourier transform (FRFT) is proposed for the case that the time width of wideband linear frequency modulated pulse signals is not equalto the width of observation time. The MUSIC algorithm for direction of arrival (DOA) estimation in the fractional Fourier domain is improved. Based on the energy-concentrated properties of linear frequency modulated signal in the fractional Fourier domain, the proposed approach is used to analyze the change of center frequency with the position variation of pulse signal in observation time. And the array manifold vector of fractional Fourier domain is constructed using the MUSIC algorithm for DOA estimation. Numericalsimulation shows the effectiveness of the algorithm for DOA estimation. Then the influence of the SNR and time width in observation time on DOA estimated results is analyzed.

Key words

information processing / fractional Fourier transform / direction of arrival estimation / wideband linear frequency modulated pulse signal / center frequency / pulse signal

Cite this article

Download Citations
WANG Rui, MA Yan. DOA Estimation of Wideband Linear Frequency Modulated Pulse Signals Based on Fractional Fourier Transform. Acta Armamentarii. 2014, 35(3): 421-427 https://doi.org/10.3969/j.issn.1000-1093.2014.03.020

References

[1] XiangL, Ye Z, Xu X, et al. Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling[J]. IET Microwaves, Antennas & Propagation, 2008, 2(3): 281-287.
[2] LiuZ M, Huang Z T, Zhou Y Y. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J]. Signal Processing, 2011, 59(9): 4256-4270.
[3] OzaktasH M, Kutay M A, Zalevsky Z. The fractional Fourier transform with applications in optics and signal processing[M]. New York: John Wiley & Sons,2001:117-183.
[4] CuiY, Liu K, Wang J. Direction of arrival estimation of coherent wideband LFM signals in multipath environment[C]∥2010 IEEE 10th International Conference on Signal Processing (ICSP). Beijing: IEEE, 2010: 58-61.
[5] ChongH, Xiaomin Z. DOA estimation of multi-component LFM in complex environment using ESPRIT based on FRFT[C]∥2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Xi’an: IEEE, 2011: 1-4.
[6] JinX, Zhang T, Bai J, et al. DOA estimation of coherent wideband LFM signals based on fractionalFourier transform and virtual array[C]∥2010 3rd International Congress on Image and Signal Processing (ICISP). Yantai: IEEE, 2010: 4380-4384.
[7] 陶然,周云松. 基于分数阶傅里叶变换的宽带LFM信号波达方向估计新算法[J]. 北京理工大学学报,2005,25(10):895-899.
TAO Ran, ZHOU Yun-song. A novel method for the direction of arrival estimation of wideband linear frequency modulated sources based on fractional Fourier transform[J].Transactions of Beijing Institute of Technology, 2005,25(10):895-899.(in Chinese)
[8] 刘小河,王建英,杨美英. 基于分数阶傅里叶变换的宽带LFM相干信号的DOA估计[J].数据采样与处理,2008,23(5):547-550.
LIU Xiao-he, WANG Jian-ying, YANG Mei-ying. DOA estimation of coherent wideband LFM sources based on fractional Fourier transform[J].Journal of Data Acquisition & Processing, 2008,23(5): 547-550. (in Chinese)
[9] 张艳红,齐林,穆晓敏,等. 基于分数阶傅立叶变换的WLFM信号DOA估计[J].信号处理,2005,21(4):57-60.
ZHANG Yan-hong, QI Lin, MU Xiao-min, et al. DOA estimation of WLFM signal based on fractional Fourier transforms[J].Signal Processing, 2005,21(4):57-60. (in Chinese)
[10] 马艳,罗美玲. 基于分数阶傅里叶变换水下目标距离及速度的联合估计[J].兵工学报,2011,32(8):1030-1053.
MA Yan,LUO Mei-ling. FRFT-based joint range and radial velocity estimation of underwater target[J].Acta Armamentarii, 2011,32(8):1030-1053. (in Chinese)
[11] 吴晓涛. 基于分数阶傅里叶变换的信道估计算法研究[D],哈尔滨:哈尔滨工业大学,2010.
WU Xiao-tao. Research on channel estimation algorithm based on fractional Fourier transform[D].Harbin:Harbin Institute of Technology,2010. (in Chinese)
[12] HsueW L, Pei S C. Rational-ordered discrete fractional Fourier transform[C]∥2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). Bucharest: IEEE, 2012: 2124-2127.
[13] PeiS C, Liu C L, Lai Y C. The generalized fractional Fourier transform[C]∥2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto: IEEE, 2012: 3705-3708.
[14] KoA, Ozaktas H M, Candan C, et al. Digital computation of linear canonical transforms[J].Signal Processing,2008,54(6):2383-2394.
[15] OktemF S, Ozaktas H M. Linear algebraic analysis of fractional Fourier domain interpolation[C]∥17th Signal Processing and Communications Applications Conference (SIU) , Antalya:IEEE, 2009: 873-875.
[16] OzaktasH M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform[J].IEEE Transactions on Signal Processing, 1996, 44(9):2141-2150.
[17] 赵兴浩,邓兵,陶然. 分数阶傅立叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364.
ZHAO Xing-hao, DENG Bing, TAO Ran.Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005,25(4): 360-364. (in Chinese)
[18] 刘峰,徐会法,陶然,等. 分数阶Fourier域多分量LFM信号间的分辨研究,中国科学:信息科学,2012,42(2):136-148.
LIU Feng, XU Hui-fa, TAO Ran, et al. Research on resolution among multi-component LFM signals in the fractional Fourier domain[J].Scientia Sinica Informationis, 2012,42(2):136-148. (in Chinese)
[19] 马艳,王瑞,陈航. 一种FRFT变换幅度峰值的快速搜索[C]∥2012鱼雷自导引信技术研讨会论文集.北京:中国造船工程学会水中兵器委员会,2012,9:95-98.
MA Yan, WANG Rui, CHEN hang. A method of transform amplitude quick search in FRFT[C]∥2012 Torpedo Homing Letter Technology Conference Proceedings. Beijing: China Shipbuilding Engineering Society Underwater Weapons Committee,2012,9:95-98. (in Chinese)

Accesses

Citation

Detail

Sections
Recommended

/