Application of Improved Partial Least Squares Method in Near-infrared Spectrum Analysis for Aviation Kerosene

LI Hui;QU Yi;GAO Xin;BO Bao-xue;LIU Guo-jun

Acta Armamentarii ›› 2010, Vol. 31 ›› Issue (8) : 1106-1109. DOI: 10.3969/j.issn.1000-1093.2010.08.019
Research Notes

Application of Improved Partial Least Squares Method in Near-infrared Spectrum Analysis for Aviation Kerosene

  • LI Hui,QU Yi,GAO Xin,BO Bao-xue,LIU Guo-jun
Author information +
History +

Abstract

980 nm low divergence semiconductor lasers with optimized large optical cavity (LOC) structure was designed for high power single mode operation. The InGaAs strained quantum well (QW) laser material was grown with solid source molecular beam epitaxy (MBE) system. The high efficiency single mode lasers were fabricated with 3 μm stripe width and 750 μm cavity length. The maximum output power of 70 mW was achieved at 100 mA injection current at room temperature, with the maximum slope efficiency of 0.89 W/A and typical vertical divergent angle of 28°. The output power of the device reached 190 mW under 250 mA current and the device could operate at 70 ℃ reliably.

Key words

optoelectronics and laser / 980 nm single mode semiconductor lasers / high power / low divergence

Cite this article

Download Citations
LI Hui,QU Yi,GAO Xin,BO Bao-xue,LIU Guo-jun. Application of Improved Partial Least Squares Method in Near-infrared Spectrum Analysis for Aviation Kerosene. Acta Armamentarii. 2010, 31(8): 1106-1109 https://doi.org/10.3969/j.issn.1000-1093.2010.08.019

References

[1] Laidig W D, Caldwell P J, Peng C K. Strained layer quantum well injection laser[J]. Appl Phys Let, 1984,44: 653-465.
[2] Laidig W D, Lin Y F, Caldwell P J. Properties of InxGa1-xAs-GaAs strained-layer quantum-well-heterostructure injection lasers[J]. J Appl Phys, 1985,57: 33-36.
[3] Adams A R. Band-structure engineering for low-threshold high-efficiency semiconductor lasers[J]. Electron Lett, 1986, 22:249-251.
[4] Yablonovitc E, Kane E O. Reduction of lasing threshold current density by the lowering valence band effective mass[J]. J Lightwave Technol, 1986, LT-4:504-506.
[5] Kolbas R M, Anderson N G, Yang Y J. Strained-layer InGaAs-GaAs-AlGaAs photo-pumped and current injection lasers[J]. IEEE J Quantum Electron, 1988,24: 1605-1613.
[6] Beernink K J, York P K, Coleman J J. Dependence of threshold current density on quantum well composition for strained-layer InGaAs-GaAs lasers by metalorganic chemical vapor deposition[J]. Appl Phys Lett,1989, 55: 2585-2587.
[7] Chand N, Becker E E, Dutta N K. Excellent uniformity and very low ((50 A/cm2) threshold current density strained InGaAs quan-

tum well diode lasers on GaAs substrate[J]. Appl Phys Lett, 1991, 58:1704-1706.
[8] Wu M C, Chen Y K, Hong M, et al. High-temperature operation of periodic index separate confinement heterostructure quantum well laser[J]. Appl Phys Lett, 1991, 59:2784-2786.
[9] Dutta N K, Lopata J, Cho A Y. Performance characteristics of GaInAs/GaAs large optical cavity quantum well lasers[J]. Electron Lett, 1991, 27:680- 682.
[10] Verdiell J M, Ziari M, Welch D F. Low-loss coupling of 980 nm GaAs laser to cleaved single mode fibre[J]. Electron Lett, 1996, 32 (19):1817-1818.
[11] Lin G, Yen S T, Lee C P, et al. Extremely small vertical far-field angle of InGaAs-AlGaAs quantum-well lasers with specially designed cladding structure[J]. IEEE Photon Technol Lett, 1996, 8 (12):1588-1590.
[12] O'Brien P A, Skovguard P M W, Mcinerney J G, et al. Broad area semiconductor lasers with improved near and far fields using enhanced current spreading[J]. Electron Lett, 1998, 34:1943-1944.
[13] 徐遵图, 杨国文, 徐俊英, 等. MBE 生长高光功率转换效率InGaAs/GaAs/AlGaAs应变量子阱激光器[J].半导体学报, 1999,20(3):194-199.
XU Zun-tu, YANG Guo-wen, XU Jun-ying, et al. High power conversion efficiency InGaAs/GaAs/AlGaAs strained layer quantum well lasers grown by MBE[J]. Chinese Journal of Semiconductors, 1999, 20(3):194-199. (in Chinese)
[14] YANG Guo-wen, XU Jun-ying, XU Zun-tu, et al. Theoretical investigation on quantum well lasers with extremely low vertical divergence and low threshold current[J]. J App l Phys, 1998, 83 (1): 8.
[15] ZHU Xiao-peng, XU Zun-tu, ZHANG Jing-ming, et al. A single mode 980 nm InGaA/GaA/A lGaAs large optical cavity quantum well laser with low vertical divergence angle[J]. Chinese Journal of Semiconductors,2002, 23(4): 342-346.
[16] 徐遵图,徐俊英,杨国文,等 InGaAs/GaAs/AlGaAs应变量子阱激光器[J].中国激光, 1999,26(5):7-11.
XU Zun-tu, XU Jun-ying,YANG Guo-wen, et al. InGaAs/AlGaAs strained layer quantum well lasers[J]. Chinese Journal of Lasers, 1999,26(5):7-11. (in Chinese)
[17] 余波,盖红星,韩军,等. 应变InGaAs/GaA量子阱MOCVD生长优化及其在980 nm半导体激光器中的应用[J]. 量子电子学报,2005,22(1):81-84.
YU Bo, GAI Hong-xing, HAN Jun, et al. Optimization of MOCVD-growth strain InGaAs/GaAs quantum wells and its application for 980 nm LD[J]. Chinese Journal of Quantum Electronics, 2005,22(1):81-84. (in Chinese)

357

Accesses

0

Citation

Detail

Sections
Recommended

/