Analysis of Factors Affecting Parachute Landing Injuries Based on Finite Element Modeling

RENHailong, CAOShuanghui, PENGHan, DOUQingbo, SUOTao

PDF(16896 KB)
PDF(16896 KB)
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (4) : 240381. DOI: 10.12382/bgxb.2024.0381

Analysis of Factors Affecting Parachute Landing Injuries Based on Finite Element Modeling

Author information +
History +

Abstract

The parachute landing injuries of paratroopers have been a focal point in aviation medicine and special medical studies.It is very important to investigate the biomechanical mechanisms of landing injuries for the protection and prevention of parachute landing injuries.The factors influencing the lower limb injuries of paratroopers subjected to landing impact are numerically simulated by using the global human body models consortium (GHBMC) full-body finite element model.The findings indicate that the long bones of the lower limbs such as femur and tibia are less likely to be injured during normal landing impact.However,the calcaneus,talus and meniscus are susceptible to injury due to compression from the long bones,and the vulnerable area includes the medial tubercle of calcaneus,the trochlea of talus,and the anterior horn of lateral meniscus.The study also reveals the variations in injury mechanisms in different landing scenarios.The descent speed significantly affects ground impact forces,thereby greatly increasing the probability of stress fractures in the long bones of lower limbs.The horizontal wind speed can alter the center of gravity to increase the likelihood of ankle injuries.The ground conditions influence the duration of impact contact,increasing the probability of injuries to the ankle,particularly the calcaneus.

Key words

paratrooper / parachuting / landing injury / biomechanical mechanism / lower limb injury

QR code of this article

Cite this article

Download Citations
REN Hailong , CAO Shuanghui , PENG Han , DOU Qingbo , SUO Tao. Analysis of Factors Affecting Parachute Landing Injuries Based on Finite Element Modeling. Acta Armamentarii. 2025, 46(4): 240381 https://doi.org/10.12382/bgxb.2024.0381

0 引言

空降兵作为一种全方位快速机动的军种,因其军事战略重要性,越来越受到各国军事当局的重视[1]。值得注意的是,空降兵在发挥巨大战略价值的同时,也承受极高的受伤风险。与其他兵种相比,空降兵损伤伤情往往更加严重。美军陆军环境医学研究所的相关研究表明,空降兵受伤的概率是其他兵种的20倍[2]
空降兵在整个空降过程中,需要承受极端复杂的冲击载荷[3],主要包括两个阶段:一是高空开伞阶段,头部、颈部、肩部需要承受极大的伞绳拉力;二是着陆冲击阶段,脊柱、下肢、足等部分都将承受数倍于体重的地面冲击力。据相关流行病学调查研究表明,60%~95%的跳伞损伤发生在着陆阶段。着陆瞬间地面反作用力沿足底向踝关节、小腿和膝关节向上传递,人体通过肌肉收缩和下肢关节的深度屈伸来缓冲,因此空降兵下肢容易出现多种骨肌损伤。曾佳敏等[4]对我军空降兵的相关流行病学调查研究结果表明,空降兵着陆损伤的易发生部位主要集中在距小腿关节、膝关节和脊柱。
空降兵自从二战时期诞生以来,其与跳伞着陆相关的人体骨肌系统损伤就引起了世界各国研究人员的广泛关注[5-7]。国内外相关流行病学研究表明,这些损伤的原因和机制多种多样,十分复杂。Ekeland[2]对4 499次跳伞损伤进行调查发现,约70%的着陆伤是由于不正确的着陆姿势导致的。Dhar[8]对150名着陆伤患者的统计发现,着陆伤的发生概率与跳伞的伞龄明显相关。Knapik等[9]对23031次军用降落伞着陆进行了回顾性分析,发现75%的伤害是由于着陆不当造成的。这些着陆方式使身体各部分无法有效协调以吸收地面的冲击力,受伤还与夜间跳伞、重型装备、高风速、高温高湿、飞行器类型、逃生方法和缠绕有关。自20世纪80年代以来,我国空军医院和疗养院也陆续有关于空降兵下肢损伤部位和机制的研究。王丽珍等[10]、赵刚等[3]对我军空降兵的伞降损伤因素和损伤机制进行一系列研究,大多数研究也均是基于流行病学调查或无损的生物力学实验研究方法,基于动力学特征(垂直地面反力、关节运动角度)或伞降着陆过程中人体易损伤部位去论证相关的着陆冲击损伤机制,缺乏对空降兵着陆损伤机制更加深入的力学研究。
总体而言,目前关于空降兵着陆损伤的研究成果大部分是基于流行病学调查研究得到的[11-14]。这种研究方法虽然能得到非常真实的研究数据,但是需要长时间跟踪调查才能得到可信研究数据,且无法对损伤机制进行深入的研究。此外,招募志愿者进行实验测试也是研究跳伞着陆损伤的有效方法之一[15-18],能够在实验室条件下测量出受试者在模拟伞降着陆过程中相关运动学参数。但也存在其局限性,难以复现真实着陆过程中的危险情况同时取得数据量有限,极大地限制了对着陆损伤机制的研究,而有限元模拟方法可以有效克服该局限性。随着医学影像技术和计算机软硬件技术的飞速发展,基于真实人体结构建立的三维有限元模型具有较高的几何相似性和力学相似性,已被广泛应用于运动损伤的研究领域[19-24]
据以往的流行病学调查和实验研究发现,着陆速度、水平风速和地面硬度是影响空降兵着陆时下肢损伤的重要因素,但目前通过量化指标评价不同着陆场景下空降兵伞降着陆下肢损伤风险的研究较少。因此,本文基于一个十分成熟并被广泛使用的全人体有限元模型,根据着陆速度、水平风速和地面硬度构建不同的着陆场景,并进行空降兵着陆冲击仿真。通过分析下肢主要长骨的受力状态判断不同着陆场景下肢损伤概率,同时对下肢主要关节的相关作用过程及力学响应进行分析,分析不同着陆场景下下肢易损伤确定位置和发生机制。

1 人体着陆冲击有限元模型

1.1 人体有限元模型

本文使用的人体有限元模型是男性50百分位全球人体生物力学模型 (Global Human Body Models Consortium,GHBMC)模型,该模型是全球人体建模联盟开发的世界上最完整、最先进的计算人体有限元模型之一[25]
GHBMC模型是基于一名50百分位男性志愿者(174.9cm,78.6kg)的大量医学成像和人体测量学分析开发的。模型分为头部、颈部、胸部、腹部、骨盆、上肢、下肢,包含皮肤、器官、肌肉、骨骼、韧带等12种结构,共计256万个网格、136万个节点、1301个部件,涉及899种材料,具有较高的生物仿真度,如图1所示。模型计算时长约为8h/100ms(64核,MPP求解器)。
Fig.1 GHBMC full-body finite element model

图1 GHBMC全人体有限元模型

Full size|PPT slide

GHBMC模型下肢骨骼使用二维(2D)壳单元和三维(3D)实体单元共同建模,内部松质骨部分使用实体单元,包裹在松质骨外面的皮质骨部分使用壳单元。肌肉模型采用一维(1D)梁单元和三维实体单元共同建模,一维梁单元用于模拟肌肉主动力,三维实体单元用于模拟肌肉被动力。主动肌部分使用Hill模型,被动肌部分采用Ogden超弹性模型,主动肌力通过*USE PARAMETER ALM关键词给定相应的肌肉激活水平进行控制。韧带和肌腱部分采用二维壳单元和三维实体单元组合建模。GHBMC模型可以模拟包括股骨、胫骨、腓骨等下肢长骨的骨折以及踝关节和距下关节损伤等下肢损伤特征。本文仅考虑不同着陆场景对空降兵伞降着陆下肢损伤模式的影响,并未考虑肌肉主、被动力模型的个性化特征。

1.2 人体着陆冲击有限元模型

GHBMC模型的初始姿态是坐姿,而跳伞着陆时大多采用站立或下蹲姿势做近似自由落体运动,与GHBMC模型的初始姿态存在明显差异。因此,建立人体着陆冲击有限元模型,必须调整GHBMC模型的初始姿态。同时由于GHMBC模型精细化的建模方式,其姿态调整需要综合考虑骨骼的运动以及软组织的变形,传统基于刚体运动的模型姿态调整方式不适用于其姿态调整。本文借助人体有限元模型调姿软件[26],基于预模拟方法,通过在GHBMC模型关节处施加位移边界条件进行模型姿态的调整,如图2所示。
Fig.2 Posture adjustment of human finite element model

图2 人体有限元模型姿态调整

Full size|PPT slide

本文主要关注空降兵着陆冲击时下肢部位的力学响应和损伤模式,不考虑人体在空中的运动变化。为了缩短计算时间和节约计算资源,将体有限元模型足底与地面的初始距离设为5mm,仿真过程忽略降落伞升力的影响。采用*LOAD_Z关键字定义重力场,并通过*INITIAL_VELOCITY关键字定义人体有限元模型的速度边界条件,具体的速度方向及大小根据研究工况的不同进行相应调整。同时采用*AUTOMATIC_SURFACE_TO_SURFACE关键字定义人体模型外表面皮肤及软组织(主面)与地面(从面)之间的接触关系,最终建立的人体着陆冲击有限元模型如图3所示。
Fig.3 Human landing impact finite element model

图3 人体着陆冲击有限元模型

Full size|PPT slide

1.3 人体着陆冲击有限元模型验证

为保证后续仿真研究的可靠性,本文设计了志愿者平台着陆实验。通过相关实验数据(垂直地面反力和膝关节、踝关节角度变化)与仿真结果进行对比分析,从而评估GHBMC人体有限元模型在着陆冲击工况研究中的可行性。
本文验证实验招募3名健康男性志愿者作为研究对象,其基本情况见表1。志愿者都是身体发育完全的研究生,自愿参加本实验,知晓实验的各个环节。志愿者每周至少运动8h,保持身体状态。实验前4h内,不从事剧烈运动,避免疲劳影响实验结果。每位志愿者在实验前均已知晓实验意图,并签署知情同意书。
Table 1 General information of subjects

表1 受试者基本情况

志愿者编号 年龄/岁 身高/cm 体重/kg 有无伤病史
1 22 176 72.6
2 23 173 74.2
3 22 177 75.3
实验使用测力平台(DYDD-005D 传感器,蚌埠大洋传感系统工程有限公司)来测量志愿者着陆时的垂直地面反力,同时使用高速摄像机(Phantom Micro C320,1920×1080,1400帧/s,美国Vision Research 公司)来捕捉实验过程中志愿者膝关节、踝关节角度变化数据。同时为提高志愿者运动过程中膝关节和踝关节角度变化数据的可靠性,实验时志愿者均穿着紧身裤,并在志愿者大腿、小腿、足部、膝关节和踝关节部位粘贴反光标记点,如图4所示。反光标记点的粘贴均在专业运动测量人员指导下进行,以确保能获得准确的关节运动轨迹。
Fig.4 Location of reflective marker points

图4 反光标记点粘贴位置

Full size|PPT slide

本文共设置两种高度(0.45m和0.80m)的验证实验,根据能量守恒定律,两种高度下志愿者的着陆速度分别为2.97m/s和3.96m/s。
平台实验过程与仿真过程对比如表2所示。志愿者跳离平台后,志愿者的脚尖首先接触地面,此时着地缓冲阶段开始。随后,志愿者的踝关节开始背屈,直到整个脚底接触地面。最后踝关节和膝关节进一步深度弯曲以缓冲地面反力直至缓冲结束。仿真结果与志愿者平台实验中下肢运动趋势基本保持一致。
Table 2 Comparison of platform landing experiemnts and simulations

表2 平台着陆实验与仿真对比

时间/ms 实验结果 仿真结果
0
40
80
120
除对比着陆过程中下肢运动趋势外,本文还从志愿者实验和仿真中的地面反力和膝关节以及踝关节运动角度等方面量化评估GHMBC模型在跳伞着陆这一工况中使用的可行性,如图5~图7所示。
Fig.5 Comparison of experimental and simulated GRFs at different platform heights

图5 实验和仿真垂直地面反力对比

Full size|PPT slide

Fig.6 Comparison of experimental and simulated knee joint motion angles at different platform heights

图6 实验和仿真膝关节运动角度对比

Full size|PPT slide

Fig.7 Comparison of experimental and simulated ankle joint motion angles at different platform heights

图7 实验和仿真踝关节运动角度对比

Full size|PPT slide

图5~图7中可以看出,在两种高度下的地面垂直反力、膝关节和踝关节运动角度3项指标的对比分析中,仿真数据与实验数据的峰值大小和峰值出现时刻的误差均在10%以下,仿真数据的变化趋势与实验数据基本保持一致。结合上述两个方面的对比分析,可以认为GHMBC模型是可用于研究着陆冲击这一工况下的人体下肢动态力学响应分析。

2 空降兵着陆损伤参数研究

在综合考虑必要性和可靠性的前提下,本文设置了3m/s、5m/s和7m/s三组下降速度[27]以及4m/s、2m/s和0m/s三组水平风速[28]的模拟工况,其中水平风速的施加并未考虑风场与人体之间复杂的流固耦合过程,仅通过给定人体模型的水平初速实现。同时,考虑到空降兵着陆时可能会遇到软硬不同的着陆地面,因此还设置了软黏土、粉砂岩以及混凝土3组关于着陆地面[29]的模拟工况。同时为尽可能还原真实着陆场景,在研究水平速度和地面条件这两类因素对着陆冲击的影响时,下降速度均设为6m/s[30]。为了厘清不同着陆场景对空降兵伞降着陆时下肢损伤机制和模式的影响,以上3种影响因素之间独立探究,不考虑多种影响因素同时存在的着陆场景。
不同因素对空降兵着陆冲击下肢损伤机制和模式的影响具体通过改变着陆冲击有限元模型中人体的下降速度和水平速度以及地面的材料参数来实现。不同影响因素的有限元模拟研究中,模型的参数设置如表3~表5所示。
Table 3 Simulation parameter settings for analysis of descent speed effect

表3 下降速度影响分析仿真工况参数设置

下降速度/
(m·s-1)
水平风速/
(m·s-1)
着陆地面 地面密度/
(kg·m-3)
地面模量/
GPa
地面
泊松比
3 0 混凝土 2500 30 0.3
5 0 混凝土 2500 30 0.3
7 0 混凝土 2500 30 0.3
Table 4 Simulation parameter settings for analysis of horizontal wind speed effect

表4 水平风速影响分析仿真工况参数设置

下降速度/
(m·s-1)
水平风速/
(m·s-1)
着陆地面 地面密度/
(kg·m-3)
地面模量/
GPa
地面
泊松比
6 4 混凝土 2500 30 0.3
6 2 混凝土 2500 30 0.3
6 0 混凝土 2500 30 0.3
Table 5 Simulation parameter settings for analysis of ground condition effect

表5 地面条件影响分析仿真工况参数设置

下降速度/
(m·s-1)
水平风速/
(m·s-1)
着陆地面 地面密度/
(kg·m-3)
地面模量/
GPa
地面
泊松比
6 0 软黏土 1600 0.01 0.4
6 0 粉砂岩 2160 0.2 0.3
6 0 混凝土 2500 30 0.3
为量化评估不同着陆场景下空降兵着陆冲击下肢损伤的风险,本文选取股骨力准则、胫骨压缩力准则和足踝损伤准则被广泛认可的下肢损伤评价准则对下肢损伤的情况进行评判[31-33],具体损伤评价指标和损伤阈值以及损伤概率函数见表6,有限元模型中下肢长骨轴向力数据提取位置如图8所示。
Table 6 Injury criteria for lower limb

表6 下肢损伤评价准则

下肢损伤准则 损伤评价指标 损伤阈
值/kN
损伤概率
(简明损伤定级
标准2+)
股骨力准则 股骨轴向力 10.00 1 1 + e 5.7949 - 0.5196 F
胫骨压缩力准则 胫骨近端轴向力 8.00 1 1 + e 0.5204 - 0.8189 F + 0.0686 m
足踝损伤准则 胫骨远端轴向力 7.59 1 1 + e 4.572 - 0.670 F
Fig.8 Data extraction locations for three injury assessment criteria

图8 3种损伤评价指标数据提取位置

Full size|PPT slide

2.1 下降速度

在不同下降速度模拟工况中,人体着陆时的运动学数据及垂直地面反力对比如图9所示。从图9中可以看出,随着下降速度的增加,垂直地面反力的增加尤为明显。从5.46kN(3m/s)增加至14.23kN(7m/s),涨幅高达160.51%。同时,对比膝关节和踝关节在矢状面内屈曲角位移来看,随着下降速度的增加,地面垂直反力也发生显著增长,此时需要踝关节和膝关节更大范围的屈曲来吸收冲击能量。由于膝关节和踝关节生理结构的不同,膝关节矢状位正常屈曲范围是要明显大于踝关节。随着下降速度的增加,踝关节屈曲角位移从12.32°增加至20.54°,增长66.75%;而膝关节屈曲角位移从36.26°增加至71.77°,增长97.95%。对比分析可以表明在空降兵半蹲式着陆冲击工况中,膝关节在地面冲击能量吸收上的贡献是大于踝关节。
Fig.9 Comparison of kinematic data at different descent speeds during landing

图9 不同下降速度着陆时运动学数据对比

Full size|PPT slide

图10为不同下降速度模拟工况中用于下肢损伤评价的损伤指标(股骨轴向力和胫骨近/远端轴向力)的变化情况。根据3种损伤指标的峰值载荷大小来分析,胫骨远端轴向力最大,股骨轴向力最小,符合人体着陆冲击过程中冲击波沿人体自下往上的传播衰减规律。同时也表明胫骨远端作为除足部外首要缓冲区域,较胫骨近端和股骨,发生损伤的概率是高于二者。
Fig.10 Comparison of lower limb injury indices during landing at different descent speeds

图10 不同下降速度着陆时下肢损伤指标对比

Full size|PPT slide

同时从3种损伤指标峰值载荷的变化情况来看,随着下降速度的增加,股骨轴向力、胫骨近端轴向力以及胫骨远端轴向力的最大增幅分别为155.64%、144.90%和137.34%。虽然最大峰值载荷均未超过损伤阈值,但表明下降速度的大小能显著影响下肢长骨的力学响应,同时也显著提高下肢长骨患应力性骨折的概率。
除股骨、胫骨和腓骨等下肢主要长骨外,跟骨、距骨以及半月板作为踝关节和膝关节的重要组成部分,在人体着陆冲击过程也容易因为长骨的过度挤压而出现局部损伤,图11为3m/s和7m/s两种下降速度下跟骨、距骨和半月板峰值应力对比。
Fig.11 Comparison of peak stress in calcaneus,talus,and meniscus at different descent speeds

图11 不同下降速度下跟骨、距骨和半月板峰值应力对比

Full size|PPT slide

图11可见:在3m/s下降速度下,三者的峰值应力分别为19.82MPa、16.85MPa和54.70MPa;跟骨应力集中于跟骨结节内侧突以及后距关节面附近;距骨应力集中于距骨滑车面上靠近距骨颈位置;半月板应力集中于外侧半月板前角尖端。三者应力集中的原因是由于人体在着陆后关节屈曲缓冲过程中,股骨和胫骨、胫骨和距骨以及距骨和跟骨直接发生挤压碰撞。
当下降速度增大至7 m/s时,跟骨、距骨和半月板的峰值应力分别为30.78MPa、26.56MPa和66.00MPa。跟骨和距骨应力集中位置面积更大且向外侧移动,半月板除外侧半月板前角尖端有更大面积的应力集中外,内侧半月板体部也有较高水平的应力分布,表明当下降速度增大时,踝关节除矢状面的屈曲活动外,还伴随有一定程度上的外翻来缓冲地面冲击力,膝关节也需要更大的屈曲角度来进行能量缓冲,进一步验证了图9所示关节运动学数据。

2.2 水平风速

在不同水平风速模拟工况中,人体着陆时的运动学数据及垂直地面反力对比如图12所示。在此项研究中,无水平风速为对照组。从图中可以看到,随着水平风速的增加,地面反力呈现减小的趋势,从12.00kN(无水平风速)下降至10.09kN(4m/s),最大下降幅度为15.92%。但膝关节和踝关节在矢状面内的屈曲角度随水平风速的增加而增加,最大增长幅度分别为14.18%和49.08%,该现象与文献[28]中实验结果一致。
Fig.12 Comparison of kinematic data at different wind speeds during landing

图12 不同水平风速着陆时运动学数据对比

Full size|PPT slide

结合图13不同水平速度下人体质心位移的分布可以很好地解释图12中的这一现象。在无水平风速下时,由于人体在着陆冲击过程中需要膝关节的主动弯曲以吸收地面冲击力,人体质心在胸-背方向上是往后运动;在以4m/s的水平风速着陆时,由于水平风速的作用,人体质心在胸-背方向是向前运动的,踝关节和膝关节需要进行更大范围的屈曲活动来维持姿势的稳定。同时人体质心在头-足方向上的运动位移是小于无水平风速工况下,根据能量转化的规律,存在水平风速情况着陆时垂直地面冲击力是要小于无水平风速情况下。
Fig.13 Displacement of human center of mass at different wind speeds

图13 不同水平风速下人体质心位移

Full size|PPT slide

图14为不同水平风速着陆时股骨轴向力、胫骨近/远端轴向力的分布情况。由图14可以看出3种损伤评价指标的峰值载荷均远远低于相应的损伤阈值,表明在该研究工况下下肢长骨在着陆冲击过程中损伤概率是较小的。同时由于在水平风速着陆时垂直地面冲击力的减小,胫骨和股骨等下肢长骨的轴向力也随之减小。
Fig.14 Comparison of lower limb injury indices during landing at different wind speeds

图14 不同水平风速着陆时下肢损伤指标对比

Full size|PPT slide

结合图15不同水平风速下跟骨、距骨和半月的峰值应力变化可以更好地解释图12所示运动学数据变化情况。与无水平风速三者的应力分布相比,在4m/s水平风速工况下,跟骨峰值应力有所下降,这是因为地面垂直冲击力的减小,但应力集中位置基本无变化;距骨的峰值应力从23.10MPa增加至25.95MPa,同时应力集中位置除距骨滑车面外侧外,距骨滑车面后部也有一定水平的应力集中,这是因为距骨作为距上关节和距下关节的连接枢纽,在水平风速着陆下踝关节需要矢状面内更大范围的屈曲以维持姿势稳定,这解释了图12所呈现的3种着陆数据中踝关节矢状面屈曲角度增长最大的原因(49.08%)。
Fig.15 Comparison of peak stresses in calcaneus,talus, and meniscus at different wind speeds

图15 不同水平风速下跟骨、距骨和半月板峰值应力对比

Full size|PPT slide

2.3 地面条件

在不同地面的模拟工况中,人体着陆时的运动学数据及垂直地面反力对比如图16所示。根据着陆地面弹性模量的差异,可以将着陆地面分为软/硬两类地面。软黏土地面为软地面,粉砂岩以及混凝土地面为硬地面。在不同着陆地面工况下,地面垂直反力的峰值10.60kN(软黏土)增长至12.00kN(混凝土)。而踝关节和膝关节矢状面内的屈曲角位移呈现小幅下降趋势,踝关节屈曲角位移从21.51°下降至18.33°,膝关节屈曲角位移从64.06°下降至62.97°。但从3类运动学数据峰值分布来看,其在软、硬两类地面工况下分别有相差较小的数据峰值,表明人体在软/硬两类地面条件下着陆时存在不同的能量缓冲机制。
Fig.16 Comparison of kinematic data at different ground conditions during landing

图16 不同地面条件着陆时运动学数据对比

Full size|PPT slide

在下降速度相同的情况下,人体在硬地面上着地时,由于地面的弹性模量远大于足部软组织的弹性模量,足部软组织起到缓冲作用,地面相当于刚性。这时,地面硬度的不同对垂直地面反作用力和踝关节的背屈角度的影响不大,关节载荷也无明显变化。在软地上着陆时,人体会调整着陆策略,使关节屈曲角度尤其是踝关节随地面的软硬而变化。同时,地面的弹性模量与足部软组织的弹性模量相当,地面和足部软组织都能缓冲冲击。这两种因素共同导致地面越软,垂直向地面反作用力越小,关节力越小,同时踝关节背屈角度越大。
图17中不同地面条件着陆时人体下肢长骨的力学响应更好地验证了这一猜想。由图17可以明显看出:在硬地面着陆时,股骨和胫骨近/远端轴向力的峰值载荷和达到峰值载荷的时间变化极小;在软地面着陆时,长骨轴向力峰值载荷会随地面刚度的减小而下降,同时达到峰值载荷的时间也会随着延长。
Fig.17 Comparison of lower limb injury indices during landing at different ground conditions

图17 不同地面条件着陆时下肢损伤指标对比

Full size|PPT slide

由于地面条件不同导致的人体着陆缓冲机制的变化,跟骨、距骨以及半月板的应力分布也发生相应的改变。图18为不同水平风速下跟骨、距骨和半月板的峰值应力对比。从图18中可以看出,随着地面刚度的降低,跟骨和距骨的峰值应力均有所上升,跟骨的峰值应力更是从25.82MPa上升至33.60MPa,同时在软地面下跟骨和距骨应力集中的面积也更大。这是因为在软地面着陆时,地面和足部软组织的共同缓冲,导致跟骨以及距骨受相互作用力的时间更长。
Fig.18 Comparison of peak stresses in calcaneus,talus, and meniscus at different ground conditions

图18 不同地面条件下跟骨、距骨和半月板峰值应力对比

Full size|PPT slide

3 结论

为深入研究不同着陆场景下空降兵伞降着陆冲击下肢损伤的相关生物力学机制,本文利用广泛验证并在交通领域大量使用的GHBMC全人体有限元模型对下降速度、水平风速以及地面条件3种影响空降兵着陆损伤因素进行了相关探究。得出以下主要结论:
1) 在空降兵正常伞降着陆冲击中,股骨和胫骨等下肢承力长骨受冲击载荷直接损伤的概率较小,但跟骨、距骨以及半月板等关节重要组成部分容易由于长骨的挤压而出现局部损伤,易损伤区域包括跟骨结节内侧突、距骨滑车面以及外侧半月板前角等部位。
2) 在不同着陆场景下,空降兵下肢因为着陆冲击导致损伤的相关发生机制存在明显差异。下降速度能显著影响地冲击反力,从而导致下肢长骨患应力性骨折的概率大幅度上升;而水平风速主要通过影响空降兵着陆后重心位置,下肢关节尤其是踝关节需要更大范围的屈曲运动来维持姿势的稳定,从而导致踝关节容易超过生理活动限度而扭伤;地面条件主要会影响地面与足部的接触时长来影响踝关节尤其是跟骨的损伤概率。
总而言之,基于精细化建模的有限元模型能给空降兵着陆冲击损伤的研究提供更加深入的视角,从而可以提出更加具体的损伤机制。但值得关注的是,由于人体材料参数获取的局限性以及不同人体在生理参数上的差异性,准确预测不同着陆场景下空降兵损伤概率和位置具有一定的难度。因此目前的研究着重于研究其易损伤区域和相应的损伤机制。同时由于人体肌肉主动力施加的复杂性,本文并未考虑人体有限元模型的个性化建模以及人体模型参数的个性化调整。除此之外,由于本文验证了全人体有限元模型在着陆冲击工况模拟研究中的可行性,因此并未与其他人体有限元模型或多体动力学模型的相关研究结果进行比较。

References

[1]
姚文杰, 陈龙. 国外空降兵现状及发展趋势对我空降兵装备体系建设的启示[J]. 兵工学报, 2010, 31(增刊2):176-178.
YAO W J, CHEN L. Suggestion on equipment system construction of native airborne force based on foreign status and development trends[J]. Acta Armamentarii, 2010, 31(S2):176-178. (in Chinese)
[2]
EKELAND A. Injuries in military parachuting:a prospective study of 4499 jumps[J]. Injury, 1997, 28(3):219-222.
[3]
赵刚, 孙磊. 军事跳伞训练伤的发病机制影响因素及其预防[J]. 实用医药杂志, 2016, 33(2):105-108.
ZHAO G, SUO L. The pathogenesis,risk factors and prevention of military parachuting injuries[J]. Pratical Journal of Medicine & Pharmacy, 2016, 33(2):105-108. (in Chinese)
[4]
曾佳敏, 仲欢, 李海波, 等. 空降兵某部义务兵和军士军事训练伤特征比较分析[J]. 军事医学, 2022, 46(6):406-409.
ZENG J M, ZHONG H, LI H B, et al. Comparative analysis of characteristics of military training injuries of conscripts and sergeants in an airborne unit[J]. Military Medical Sciences, 2022, 46(6):406-409. (in Chinese)
[5]
WU L, LI J, WANG Z L, et al. The risk factors for injuries in parachuting and load exposure in the training of Chinese paratroopers[J]. Work, 2023, 75(4):1467-1476.
[6]
AZIZ S, GAN K B, RAMBELY A S, et al. Relationship between angle and peak vertical ground reaction force estimation in parachute landing fall among army parachutists using mathematical modelling[J]. Alexandria Engineering Journal, 2022, 61(7):5413-5426.
[7]
SAHIN T, BATIN S. A descriptive study of orthopaedic injuries due to parachute jumping in soldiers[J]. BMC Emergency Medicine, 2020, 20(1):58.
While parachute jumping, soldiers may suffer minor or life-threatening injuries in various parts of the body. Several trauma scoring systems assess the severity of such injuries. The primary goal of this study was to assess clinical characteristics and the severity of orthopaedic, musculoskeletal, and other injuries from military training-related parachute jumping using two trauma scoring systems (AIS and ISS). Our secondary goal was to assess whether there was an increase in injury rates with age.In total, 185 military personnel between 19 and 51 years old who were injured as a result of daytime static parachute jumping during 44 months between January 2016 and August 2019 were included in the study. Demographic data; vital signs; the level of consciousness; the Glasgow Coma Scale; ISS trauma region classifications; anatomical injury sites; AIS and ISS scores; diagnoses; treatment methods; hospitalization status; and duration of hospital stay were examined descriptively.There were 184 male and one female participant. The most commonly injured body site was the foot (33.5%), and the most common diagnosis was soft tissue trauma (64.3%). The most commonly injured body site was the foot (33.5%), and the most common diagnosis was soft tissue trauma (64.3%). Regarding treatment methods, 51.4% received analgesic pills and cold pack application, 42.7% received a plaster splint, and 5.9% had orthopaedic surgery. The mean ISS score was 5.16 ± 3.92. The hospitalization rate was significantly higher for patients with a critical AIS score than those with a severe AIS score (p < 0.001).The use of trauma scoring systems to assess injury severity among patients admitted to an ED due to a parachute jumping injury may facilitate treatment selection. We found that AIS and ISS were useful in determining injury severity. Therefore, we recommend the use of trauma scoring systems for assessing the injury severity and the therapeutic approach, and we advocate for the use of the 17 anatomical regions we used in this study. We also found that with increasing age, the severity of injury could increase.
[8]
DHAR D. Retrospective study of injuries in military parachuting[J]. Medical Journal Armed Forces India, 2007, 63(4):353-355.
This paper analyses the rate and patterns of parachuting injuries at the Sultans Oman Parachute Unit (SOPRA) in Oman.Data on 150 patients referred to Rustaq Regional Referral Hospital was collected and analysed. The injuries were defined as severe (fractures, dislocation, head trauma) or minor (contusion, bruises, sprains).The rate of severe injuries was 9 % and ankle fractures were the commonest. The minor injury rate was 13.5%. The injury rate increased in relation to age (p < 0.001). The type and possible mechanisms of injury are discussed with the recommendation for reducing the injury rates.We conclude that our data compares favourably with other studies except for higher incidence of severe injuries.
[9]
KNAPIK J J, STEELMAN R A, GRIER T L, et al. Military parachuting injuries,associated events,and injury risk factors[J]. Aviation,Space,and Environmental Medicine, 2011, 82(8):797-804.
[10]
王丽珍, 樊瑜波. 过载性损伤与防护生物力学[J]. 力学进展, 2020, 50(1):124-168.
WANG L Z, FAN Y B. The biomechanics of injury and prevention[J]. Advances in Mechanics, 2020, 50(1):124-168. (in Chinese)
[11]
FER C, GUIAVARCH M, EDOUARD P. Epidemiology of skydiving-related deaths and injuries:a 10-years prospective study of 6.2 million jumps between 2010 and 2019 in France[J]. Journal of Science and Medicine in Sport, 2021, 24(5):448-453.
[12]
GEFEN A, EPSTEIN Y. The Mechanobiology and mechanophysiology of military-related injuries[M] Switzerland:Springer, 2016:37-68.
[13]
林鹏江, 黄峰, 叶巧, 等. 我军空降兵跳伞训练伤荟萃分析[J]. 空军医学杂志, 2020, 36(4):291-293,300.
LIN P J, HUANG F, YE Q, et al. A meta-analysis of injuries to Chinese paratroopers during parachute training[J]. Aviation Medicine of Air Force, 2020, 36(4):291-293,300. (in Chinese)
[14]
STANNARD J, FORTINGTON L. Musculoskeletal injury in military special operations forces:a systematic review[J]. BMJ Military Health, 2021, 167(4):255-265.
[15]
JIANG T Y, TIAN S, FAN X Y, et al. Kinematics and kinetics of lower-extremity joints in parachuting landing with backpack and knee brace[J]. Medical Engineering & Physics, 2020,86:1-7.
[16]
CANNON J, CAMBRIDGE E D J, MCGILL S M. Increased core stability is associated with reduced knee valgus during single-leg landing tasks:investigating lumbar spine and hip joint rotational stiffness[J]. Journal of Biomechanics, 2021,116:110240.
[17]
JIANG T Y, TIAN S, CHEN T H, et al. Protection by ankle brace for lower-extremity joints in half-squat parachuting landing with a backpack[J]. Frontiers in Bioengineering and Biotechnology, 2021,9:790595.
[18]
GUO J C, YANG J M, WANG Y W, et al. Effect of different protection on lateral ankle during landing:an instantaneous impact analysis[J]. Bioengineering, 2022, 10(1):34.
[19]
向福荣, 唐圣鑫, 刘鑫鑫, 等. 女性全身关节过度活动患者跳深着陆时膝关节应力分析[J]. 医用生物力学, 2023, 38(2):317-323.
XIANG F R, TANG S X, LIU X X, et al. Analysis of knee joint stress during drop jump landing in females with generalised joint hypermobility[J]. Journal of Medical Biomechanics, 2023, 38(2):317-323. (in Chinese)
[20]
LUO C Y, JIANG T Y, TIAN S, et al. Finite element analysis of lumbar spine with different backpack positions in parachuting landing[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24(15):1679-1686.
[21]
WU X Q, PEI B Q, WANG W, et al. Finite element analysis of a novel approach for knee and ankle protection during landing[J]. Applied Sciences, 2021, 11(4):1912.
[22]
LUO C Y, JIANG T Y, TIAN S, et al. Finite element analysis of shank and ankle with different boot collar heights in parachuting landing on inversion ground surface[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25(9):953-960.
This study aimed to the biomechanics of the foot-ankle-shank complex with different boots collar heights in parachuting landing on inversion ground surface. A finite element model including tibia, fibula, ankle, foot and parachuting boot was developed. Three collar heights (low, medium, high) of the parachuting boot were simulated. Von-Mises stress, ankle inversion angle, ligament force and bone displacement were analyzed. Compared with that of the high and low collar heights, boots with medium collar height produced the lowest peak stress on the tibia and the articular cartilage of the subtalar joint. In addition, the medium collar height can better control the ankle inversion and minimize the tensile forces on the lateral ankle ligaments.
[23]
常利军, 陈秦伟, 王天昊, 等. 弹体冲击载荷下头部损伤与防护研究进展[J]. 兵器装备工程学报, 2024, 45(7):208-216.
CHANG L J, CHEN Q W, WANG T H, et al. Advances in head injury and protection under projectile impact loading[J]. Journal of Ordnance Equipment Engineering, 2024, 45(7):208-216. (in Chinese)
[24]
范鑫, 黄星源, 常利军, 等. 枪弹冲击下头-颈动力学响应及颈部被动肌影响[J]. 兵工学报, 2022, 43(9):2200-2209.
FAN X, HUANG X Y, CHANG L J, et al. Dynamic head-neck response to bullet impact and effects of passive muscles on the neck[J]. Acta Armamentarii, 2022, 43(9):2200-2209. (in Chinese)
To address the threat of projectiles and fragments in a battlefield, head-neck dynamic response to bullet impact and the effects of passive neck muscles are studied. By establishing an effective helmet-head-neck finite element model, the impact of 9 mm handgun bullets is simulated to examine the human head-neck mechanical response with or without passive muscles. The results show that in the case of front impact, stress is concentrated on the frontal head bone and the lower cervical vertebrae when the neck is extended. When the front side of the intervertebral disc fails to stretch, the passive muscles on the neck relieve the extension of the head and neck, reducing the cervical spine injury. Under the effect of passive muscles, the displacement of the head's centroid is reduced by 31.38%, and the stress exerted on the junction between cervical vertebrae and intervertebral disc as well as the maximum intervertebral disc stress are relieved by 28.76%. Thus, passive muscles play an important role in protecting the body, and thus must be considered when assessing neck injuries. The results provide reference for the assessment of neck injuries and the design of neck protective equipment.
[25]
DECKER W, KOYA B, DAVIS M L, et al. Modular use of human body models of varying levels of complexity:validation of head kinematics[J]. Traffic Injury Prevention, 2017, 18(S1):S155-S160.
[26]
戴俊超, 周云波, 张进成, 等. 载人空投着陆冲击下不同乘员姿态的损伤影响[J]. 爆炸与冲击, 2021, 41(1):125-137.
DAI J C, ZHOU Y B, ZHANG J C, et al. Effects of different postures on crew damage under the impact of manned airdrop landing[J]. Explosion and Shock Waves, 2021, 41(1):125-137. (in Chinese)
[27]
HUGHES C D, WEINRAUCH P C L. Military static line parachute injuries in an Australian commando battalion[J]. ANZ Journal of Surgery, 2008, 78(10):848-852.
The objective of this study was to define the casualty rates and anatomical distribution of injuries associated with military static line parachute (MSLP) descents conducted by an Australian Army Commando Battalion. This study was conducted to identify the strategies to reduce the injury burden related to MSLP activities.A retrospective audit of injuries resulting from MSLP descents conducted by 4th Battalion Royal Australian Regiment (4 RAR) over a 13-month period.A total of 554 MSLP descents over the time period were reviewed. The overall casualty rate was 5.1%. For MSLP descents onto land drop zones, the incidence of injury requiring hospital admission was 2.6%. Paratrooper bodyweight was associated with increased risk of injury (P = 0.04) and hospital admission (P = 0.003), particularly when conducting descents onto land drop zones. MSLP descents conducted onto land were associated with a higher incidence of casualties when compared with those conducted into water drop zones (P = 0.001).During the period from February 2004 until February 2005, 4 RAR (Commando) experienced higher casualty rates during MSLP descents than expected when compared with the published report. Strategies to decrease the casualty rate of MSLP descents onto land drop zones may include more extensive ground training, increased frequency of MSLP descents, use of ankle braces and the development of purpose built drop zones. Consideration should be given to establishing a maximum bodyweight threshold for the conduct of MSLP activities or acquiring parachutes with decreased descent velocity for larger paratroopers.
[28]
FAN Y B, WANG L Z. Biomechanics of injury and prevention[M] Singapore:Springer, 2022:245-284.
[29]
杨旭. 军用越野车车体在空投着陆过程的有限元分析[D]. 沈阳: 东北大学, 2021.
ZHANG X. Finite element analysis of military off-road vehicle body during airdrop landing[D]. Shenyang: Northeastern University, 2021. (in Chinese)
[30]
DAVISON D J. A review of parachuting injuries[J]. Injury, 1990, 21(5):314-316.
[31]
GERMANETTI F, FIUMARELLA D, BELINGARDI G, et al. Injury criteria for vehicle safety assessment:a review with a focus using human body models[J]. Vehicles, 2022, 4(4):1080-1095.
[32]
WANG B Y, YU C, JIANG X Q, et al. A numerical investigation of injury mechanisms and tolerance limit of occupant femur in combined compression-bending load[J]. International Journal of Crashworthiness, 2022, 27(2):456-465.
[33]
PENG Y, HU Z S, LIU Z X, et al. Assessment of pedestrians’s head and lower limb injuries in tram-pedestrian collisions[J]. Biomimetics, 2024, 9(1):17.
PDF(16896 KB)

2

Accesses

0

Citation

Detail

Sections
Recommended

/