
Effect of Vertically-arranged Strut on the Mixing and Initiation Characteristics of Oblique Detonation Engine
LIUYidong, QINQiongyao, LIJianzhong, YUANMingze, LILonggang, LIXiafei
Sponsored by: China Association for Science and Technology (CAST)
Editor-In-Chief: Xu Yida
ISSN 1000-1093
Hosted By: China Ordnance Society
Published By: Acta Armamentarii
CN 11-2176/TJ
Effect of Vertically-arranged Strut on the Mixing and Initiation Characteristics of Oblique Detonation Engine
The oblique-detonation engine is a new type of air-breathing engine that has great advantages in hypersonic flight above Mach 9. The oblique detonation engine with inner-jet configuration faces the problem of inhomogeneous fuel mixing due to the short mixing distance, and the inhomogeneous fuel distribution affects the stable and reliable detonation of detonation wave. A vertically-arranged strut is proposed for the efficient and low-resistance mixing of fuel. The superiority of vertically-arranged strut in achieving the stable detonation of oblique detonation waves is studied through numerical simulation, and the influence of the injection angle of vertically-arranged strut on the fuel mixing and detonation is analyzed. The results show that the hydrogen mass fraction at the outlet of the mixing section reduces with the increase in the injection angle of vertically-arranged strut, leading to the bending of hydrogen distribution structure. At the same time, the detonation area is tilted, and the detonation distance increases slightly and then gradually decreases. It can be seen that the increase in the injection angle of vertically-arranged strut strengthens the hydrogen doping and reduces the detonation distance, thus achieving stable and reliable detonation of oblique detonation waves.
oblique detonation engine / vertically-arranged strut / mixing section / initiation section / strut angle {{custom_keyword}} /
Table 1 Boundary conditions of mixing section表1 掺混段边界参数 |
位置 | 马赫数 | 温度 | 压力 | 氧气质量分数 | 氮气质量分数 | 水质量分数 | 氢气质量分数 |
---|---|---|---|---|---|---|---|
燃烧室进口 | 4.2 | 857.7 | 61004 | 0.232 | 0.736 | 0.032 | 0 |
燃料喷注器 | 1.01 | 300 | 225000 | 0 | 0 | 0 | 1 |
Fig.5 Pressure contours of detonation section with different grid accuracies图5 不同网格精度下起爆段压力等值线图 |
Table 2 Mixing conditions at the different angles vertical-arranged strut表2 不同垂直支板角度工况 |
工况 | 垂直支板角度/(°) | 工况 | 垂直支板角度/(°) |
---|---|---|---|
1 | 4 | 3 | 8 |
2 | 6 | 4 | 10 |
Fig.10 Hydrogen mass fraction at the outlet of mixing sectionunder different arranging angles of vertically-arranged strut图10 不同垂直支板角度掺混段出口氢气质量分数云图 |
Table 3 Detonation section exit pressure and temperature contours under different angles of vertically-arranged strut injection表3 不同垂直支板角度下起爆段出口压力和温度分布云图 |
![]() |
Table 4 z-axis position corresponding to the shortest cross-section of detonation distance表4 起爆距离最短截面相对应的z轴位置 |
支板角度/(°) | 4 | 6 | 8 | 10 |
---|---|---|---|---|
z/m | 0.012 | 0.012 | 0.011 | 0.0105 |
Table 5 Pressure and temperature profiles of the cross-section of detonation section at the shortest detonation distance表5 起爆距离最短位置截面压力和温度云图 |
![]() |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学:物理学力学天文学, 2022, 50(9):129-151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
凌文辉, 周林, 涂胜甲, 等. 斜爆震发动机研究进展与技术挑战[J]. 南京航空航天大学学报, 2023, 55(4):553-572.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
滕宏辉, 牛淑贞, 杨鹏飞, 等. 非均匀来流中斜爆轰波对扰动的动态响应特性[J]. 气体物理, 2023(5):1-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
覃建秀, 杨武兵. 斜爆震波起爆特性及其波系结构研究[J]. 推进技术, 2021, 42(4):851-864.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
李志敏, 彭瀚, 栾振业, 等. 膨胀波对斜劈稳定斜爆震波特性影响的数值研究[J]. 推进技术, 2023, 44(10):136-144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
韩信, 张文硕, 张子健, 等. 鼓包诱导斜爆震波的数值研究[J]. 推进技术, 2022, 43(5):190-201.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
刘彧, 肖保国, 王兰, 等. 封闭空间中斜爆震驻定稳定性增强方法及其试验验证[J]. 实验流体力学, 2021, 35(1):109-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
张子健, 韩信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术, 2021, 42(4):786-794.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
韩信, 张文硕, 张子健, 等. RP3航空煤油斜爆轰发动机试验研究[J/OL]. 实验流体力学, 2022(2022-11-11). http://kns.cnki.net/kcms/detail/11.5266.V.20221110.1516.002.html.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
俞刚, 李建国. 氢/空气超声速燃烧研究[J]. 流体力学实验与测量, 1999, 13(1):1-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |