Relationship between Key Process Parameters and Stress Field of Aviation Aluminum Alloy Welded by Laser Beam

LI Guangzu;WANG Jiangtao;XIE Li;LU Yalin;ZHANG Yongkang;HU Kejun;C. M. CASCIOLA

Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (5) : 1692-1702. DOI: 10.12382/bgxb.2023.0935
Paper

Relationship between Key Process Parameters and Stress Field of Aviation Aluminum Alloy Welded by Laser Beam

  • LI Guangzu1, WANG Jiangtao1*, XIE Li1, LU Yalin1, ZHANG Yongkang2, HU Kejun1, C. M. CASCIOLA3
Author information +
History +

Abstract

Laser welding process parameters not only affect the residual stress of aluminum alloy structural parts, but also affect their service performance. It is of great significance to explore the relationship between parameters and stress field to improve the quality of welded structural parts.The laser welding of 7075-t7351 aluminum alloy plate with a thickness of 5 mm is numerically simulated by using the cone heat source model. The influences of welding speed and laser energy on the welding residual stress field is analyzed. The accuracy of the simulated results is verified by experiments, and the relationship between the laser welding process parameters and stress field of 7075 aluminum alloy is revealed. The results show that the residual stress increases with the increase of welding speed, but when the welding speed exceeds a certain value, the stress in a weld nugget zone does not increase, and the maximum stress gradually expands to both sides. In addition, the larger the laser energy is, the smaller the residual stress is, but the distribution area of maximum residual stress gradually expands. The best process window for laser welding of 7075 aluminum alloy was obtained: welding speed is 5~7 mm/s, and laser welding energy is 70~100 J/mm. The above research has a certain value and significance in shortening the cycle of laser welding process optimization of 7075 aluminum alloy and reducing its cost.

Key words

Aluminumalloy / laserwelding / stressfield / weldingspeed / weldingenergy

Cite this article

Download Citations
LI Guangzu, WANG Jiangtao, XIE Li, LU Yalin, ZHANG Yongkang, HU Kejun, C. M. CASCIOLA. Relationship between Key Process Parameters and Stress Field of Aviation Aluminum Alloy Welded by Laser Beam. Acta Armamentarii. 2024, 45(5): 1692-1702 https://doi.org/10.12382/bgxb.2023.0935

References

[1]巴一, 韩善果, 杨永强, 等.激光摆动路径对钢/铝点焊接头组织与性能的影响[J].红外与激光工程, 2022, 51(8): 224-233.
BA Y, HAN S G, YANG Y Q, et al.Effect of the laser swing path on the microstructure and properties of steel/aluminum spot welded joints[J].Infrared and Laser Engineering, 2022, 51(8): 224-233. (in Chinese)
[2]胡林西, 周惦武, 贾骁, 等.Zr-Sn-Nb-Fe锆合金薄板激光对接焊及数值模拟[J].中国激光, 2016, 43(7):0702002.
HU L X, ZHOU D W, JIA X, et al.Numerical simulation and laser butt welding of Zr-Sn-Nb-Fe zirconium alloy sheets[J].Chinese Journal of Lasers,2016, 43(7):0702002. (in Chinese)
[3]HOSSAINE, HASSAN F, ARMAN G, et al.Microstructural analyses of aluminum-magnesium-silicon alloys welded by pulsed Nd:YAG laser welding[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(5):660-668.
[4]李晓东, 李春广, 朱志民, 等.铝合金薄板MIG焊焊接变形仿真预测的工程应用[J].焊接学报, 2014, 35(2):104 -108,118.
LI X D, LI C G, ZHU Z M, et al. Engineering applications of MIG welding deformation simulation of aluminum alloy sheet[J].Transactions of the China Welding Institution, 2014, 35(2):104-108, 118.(in Chinese)
[5]RODGE E D, FLETCHER R P. The determination of internal stresses from the temperature history of a butt welded pipe[J]. Welding Journal Research Supplement, 1938, 17: 4-7.
[6]BRUST F W, RYBICKI F E. Computational model of backlay welding for controlling residual stresses in welded pipes[J]. Journal of Pressure Vessel Technology, 1981, 103: 294-299.
[7]MORADIM, MEIABADI M S, KAZEROONI A. Numerical analysis of laser assisted titanium to polyimide welding using statistical approach[J].International Journal of Laser Science: Fundamental Theory and Analytical Methods, 2018(1/2):185-205.
[8]BEIRANVAND Z M, GHAINI F M, MOOSAVY H N, et al.The relation between magnesium evaporation and laser absorption and weld penetration in pulsed laser welding of aluminum alloys:experimental and numerical investigations[J]. Optics & Laser Technology, 2020, 128: 106170.
[9]NGUYEN Q, AZADKHOU A, AKBARI M, et al. Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper[J]. Journal of Manufacturing Processes, 2020(Aug.), 56PA: 206-215.
[10]SAHAP, WAGHMARE D. Parametric optimization for autogenous butt laser welding of sub-millimeter thick SS 316 sheets using central composite design[J].Optics & Laser Technology, 2020, 122:105833.
[11]PRABAKARAN M, KANNAN G. Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT[J].Optics & Laser Technology, 2019,112: 314 -322.
[12]LU H Y, LI M B, QIN X P, et al.Numerical simulation and experimental analysis of wide-beam laser cladding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1):237-249.
[13]宫建锋,李俐群,孟圣昊.圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析[J].焊接学报, 2022, 43(11): 50-55,83,165.
GONG J F, LI L Q, MENG S H.Analysis of the effect of circular swing laser on the flow behavior of 5A06 aluminum alloy laser welding pool[J].Transactions of the China Welding Institution, 2022, 43(11):50-55,83,165. (in Chinese)
[14]彭进,许红巧,王永彪, 等.激光光斑尺寸对激光焊接熔池、匙孔行为的影响[J].红外与激光工程, 2023, 52(7):20220130-1-20220130-11.
PENG J, XU H Q, WANG Y B, et al.Effect of laser spot size on the behavior of molten pool and keyhole in laser welding[J].Infrared and Laser Engineering, 2023, 52(7):20220130-1-20220130-11. (in Chinese)
[15]ZHANG Z Y, ZHAO X, ZHANG W H, et al.Equivalent heat source approach in a quasi-steady-state laser-GMAW hybrid welding simulation[J].Numerical Heat Transfer, Part A:Applications, 2023, 83(3):285-303.
[16]缪广红,胡昱,杨礼澳, 等.Q235钢与304不锈钢多层爆炸焊接的数值模拟研究[J].兵器装备工程学报, 2023, 44(1):220-226.
MIAO G H, HU Y, YANG L A, et al.Numerical simulation of multi-layer explosive welding of Q235 steel and 304 stainless steel[J].Journal of Ordnance Equipment Engineering, 2023, 44(1):220-226. (in Chinese)
[17]OBEID O, ALFANO G,BAHAI H, et al.Numerical simulation of thermal and residual stress fields induced by lined pipe welding[J].Thermal Science and Engineering Progress, 2018,5:1-14.
[18]邓德安,清岛祥一.用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力[J].金属学报, 2010, 46(2):195-200.
DENG D A,KIYO SHIMA S.Numerical simulation of welding residual stresses in a multi-pass butt-welded joint of austenitic steel using variable length heat source[J].Acta Metallurgica Sinica, 2010,46(2):195-200. (in Chinese)
[19]孙加民,邓德安,叶延洪, 等.用瞬间热源模拟Q390高强钢厚板多层多道焊T形接头的焊接残余应力[J].焊接学报, 2016, 37(7):32-35.
SUN J M, DENG D A, YE Y H, et al.Simulation of welding residual stresses in multi-layer and multi pass welded T-joints of Q390 high-strength steel thick plates by transient heat source[J].Transactions of the China Welding Institution, 2016, 37(7): 32-35. (in Chinese)
[20]KONG F R, KOVACEVIC R.3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint[J].Journal of Materials Processing Technology, 2010, 210(6/7):941-950.
[21]HE E G, GONG S L, WU B, et al.Distribution features of the residual stress for T-joints by laser welding[J].Rare Metal Materials and Engineering, 2011, 40(S4):130-133.
[22]AZIMI A, FALLAHDOOST H, NEJADSEYFI O.Microstructure, mechanical and tribological behavior of hot-pressed mechanically alloyed Al-Zn-Mg-Cu powders[J].Materials & Design, 2015, 75(Jun.): 1-8.
[23]KUMARP V, REDDY G M, RAO K S.Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds-effect of post weld heat treatment[J].Defence Technology, 2015, 11(4): 362-369.
[24]刘捷,王梦飞,盛兰兵, 等.铝合金/不锈钢异质金属激光焊接头组织及性能研究[J].焊接技术, 2021, 50(12):33-36,130.
LIU J, WANG M F, SHENG L B, et al.Study on microstructure and properties of aluminum alloy/stainless steel dissimilar metals joint by laser welding[J].Welding Technology, 2021, 50(12):33-36,130. (in Chinese)
[25]周广涛,刘雪松,闫德俊, 等.顶板焊接顺序优化减小焊接变形的预测[J].焊接学报, 2009, 30(9):109-112,118.
ZHOU G T, LIU X S, YAN D J, et al.Prediction for welding deformation reducing by welding sequence optimization of upper plate[J].Transactions of the China Welding Institution, 2009, 30(9):109-112,118.(in Chinese)
[26]沈洋.搅拌摩擦焊温度场与残余应力场数值模拟[D]. 西安:西安建筑科技大学, 2007:33-52.
SHEN Y.Thermostatically numerical simulation of friction stir welding[D].Xi'an:Xi'an University of Architecture and Technology, 2007:33-52.(in Chinese)
[27]FENG Z L.Processes and mechanisms of welding residual stress and distortion[M].Washington, D.C.,US: CRC Press, 2005:68-72.
[28]陈大江,张大斌,陈素, 等.“GAUSS+半椭球”热源模拟激光焊接[J].组合机床与自动化加工技术, 2022, 579(5): 174-177,186.
CHEN D J, ZHANG D B, CHEN S, et al.“GAUSS+Semi-Ellipsoid” heat source simulates laser welding[J].Modular Machine Tool & Automatic Manufacturing Technique, 2022, 579(5): 174-177,186. (in Chinese)
[29]季齐宝,王文焱,张帅锋, 等.TA2工业纯钛激光焊接的数值模拟分析[J].激光与光电子学进展, 2022, 59(17): 284-291.
JI Q B, WANG W Y, ZHANG S F, et al.Numerical simulation analysis of TA2 industrial pure titanium laser welding[J].Laser & Optoelectronics Progress, 2022, 59(17):284-291. (in Chinese)
[30]卢艳,郑世华,邢晓林.7075铝合金激光焊接残余应力及变形的有限元数值模拟[J].热加工工艺, 2013, 42(21):200-203.
LU Y, ZHENG S H, XING X L.Finite element simulation of laser welding residual stress and deformation for 7075 aluminium alloy[J].Hot Working Technology, 2013, 42(21):200-203. (in Chinese)
[31]钱晓平.基于计算机技术铝合金7075激光焊接仿真分析[J].热加工工艺, 2013, 42(9):184-186.
QIAN X P.Simulation analysis on laser welding 7075 al alloy based on computer simulation technique[J].Hot Working Technology, 2013, 42(9):184-186. (in Chinese)
[32]周祥曼,王礴允,袁有录, 等.焊接速度对电弧增材熔池流动及焊道形貌影响的数值模拟研究[J].机械工程学报, 2022, 58(10):103-111.
ZHOU X M, WANG B Y, YUAN Y L, et al.Numerical simulation study of the effects of travel speed on the molten pool flow and weld bead morphology of WAAM[J].Journal of Mechanical Engineering, 2022, 58(10):103-111. (in Chinese)
[33]伍强,徐兰英,杨永强, 等.高强钢激光焊接残余应力的研究[J].中国激光, 2015, 42(6):137-143.
WU Q, XU L Y, YANG Y Q, et al.Study on laser welding residual stress of high strength steel[J].Chinese Journal of Lasers, 2015, 42(6):137-143. (in Chinese)
[34]邹德敏,齐锦刚,赵琳, 等.焊接速度对激光-电弧复合焊接焊缝成形和低温冲击韧性的影响[J].中国激光, 2022, 49(8): 151-160.
ZOU D M, QI J G, ZHAO L, et al.Effect of welding speed on bead appearance and low-temperature impact toughness in laser-arc hybrid welding[J].Chinese Journal of Lasers, 2022, 49(8): 151-160. (in Chinese)
[35]章碧成. 6005A铝合金型材激光填丝焊接头应力应变模拟研究[D].哈尔滨:哈尔滨工业大学, 2020.
ZHANG B C.Research on stress and strain simulation of laser filled welding joint of 6005A aluminium alloy profile[D].Harbin:Harbin Institute of Technology, 2020. (in Chinese)
[36]张迪,赵琳,刘奥博, 等.激光能量对激光焊接接头熔化形状、气孔和微观组织的影响及其调控方法[J].中国激光, 2021, 48(15):204-217.
ZHANG D, ZHAO L, LIU A B, et al.Understanding and controlling the influence of laser energy on penetration,porosity, and microstructure during laser welding[J].Chinese Journal of Lasers, 2021, 48(15):204 -217. (in Chinese)
[37]孙玉杰,崔青春,韩璇璇, 等.装甲钢温度-组织-应力耦合本构模型的建立及在焊接模拟中的应用[J].兵工学报, 2017, 38(3):540-548.
SUN Y J, CUI Q C, HAN X X, et al.Establishment of thermo-metallurgical-mechanical coupling constitutive model for armour steel and its application in welding numerical simulation[J].Acta Armamentarii, 2017, 38(3):540-548. (in Chinese)br>br>

6

Accesses

0

Citation

Detail

Sections
Recommended

/