Specific Complex Locomotion Skills Control for Quadruped Robots

XU Peng;ZHAO Jianxin;FAN Wenhui;QIU Tianqi;JIANG Lei;LIANG Zhenjie;LIU Yufei

Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (S2) : 135-145. DOI: 10.12382/bgxb.2023.0874
Paper

Specific Complex Locomotion Skills Control for Quadruped Robots

  • XU Peng1,2,3*,ZHAO Jianxin2,3,FAN Wenhui1, QIU Tianqi2,3,JIANG Lei2,3,LIANG Zhenjie2,3,LIU Yufei2,3
Author information +
History +

Abstract

A complex locomotion behavior control method is proposedto improve the locomotion diversity and terrain adaptability of quadruped robot. A dynamics model for the quadruped robots is established, and then the offline rolling optimization is predicted to generate the desired trajectory of robot's complex locomotion behavior. The locomotiontrajectoriesof robot under more comprehensive nonlinear constrains, such as kinematics, joint torque, contact force, locomotion state, and terrain height,etc, are optimized. An online trajectory tracker and a foot placement hopping controller are designed to realize the online control of the quadruped robot. The proposed method is evaluated in dynamic simulation environment of multi complex locomotion. The robot can achieve front jump, backflip, forward flip and rotary jump, and can also jump over obstacles according to the given terrain information. Finally, the online trajectory tracking controller is migrated to the physical prototype of the quadruped robot, and the forward jumping test of the quadruped robot is completed. The experimental results show that the proposed method can be used effectively to achieve the stable control of various specific complex locomotion motion skills for the quadruped robot.

Key words

quadrupedrobot / complexbehavior / off-linerollingoptimizationprediction / on-linetrajectorytrackingcontroller

Cite this article

Download Citations
XU Peng,ZHAO Jianxin,FAN Wenhui, QIU Tianqi,JIANG Lei,LIANG Zhenjie,LIU Yufei. Specific Complex Locomotion Skills Control for Quadruped Robots. Acta Armamentarii. 2023, 44(S2): 135-145 https://doi.org/10.12382/bgxb.2023.0874

References

[1]BostonDynamics. Introducing Spot (previouslySpotMini[EB/OL]. (2016-06-23)[2023-12-03].https:∥www.youtube.com/watch?v=tf7IEVTDjng.
[2]BostonDynamics. Cheetah robot runs 28.3 mph; a bit faster than Usain Bolt[EB/OL]. (2012-09-06) [2023-12-03]. https:∥www.youtube.com/watch?v=chPanW0QWhA&t=7s.
[3]BostonDynamics. LS3-Legged Squad Support System[EB/OL]. (2012-09-11)[2023-12-03]. https:∥www.youtube.com/watch?v=R7ezXBEBE6U.
[4]PARKH W, WENSING P M, KIM S. Online planning for autonomous running jumps over obstacles in high-speed quadrupeds[C]∥Proceedings of the 11st Robotics Science and Systems. Rome, Italy: MIT, 2015:1-9.
[5]HYUND J , SEOK S , LEE J , et al. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. The International Journal of Robotics Research, 2015, 33(11):1417-1445.
[6]PARKH W, CHUAH M Y, KIM S, et al. Quadruped bounding control with variable duty cycle via vertical impulse scaling[C]∥ Proceedings of the 26th Intelligent Robots and Systems. Chicago, IL,US: IEEE, 2014:3245-3252.
[7]DIC J, WENSING P M, KATZ B, et al. Dynamic locomotion in the mit cheetah 3 through convex model-predictive control[C]∥ Proceedings of the 30th Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 1-9.
[8]KIMD, DI C J, KATZ B, et al. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control[DB/OL]. (2019-09-14) [2023-12-03]. https:∥arxiv.org/abs/2110.02799.
[9]GEHRINGC, COROS S, HUTTER M, et al. Control of dynamic gaits for a quadrupedal robot[C]∥ Proceedings of the 29th International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013:3287-3292.
[10]GEHRINGC, BELLICOSO C D, COROS S, et al. Dynamic trotting on slopes for quadrupedal robots[C]∥ Proceedings of the 27th Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015:5129-5135.
[11]BJELONICM, GRANDIA R, GEILINGER M, et al. Offline motion libraries and online MPC for advanced mobility skills[J]. The International Journal of Robotics Research, 2022, 41(9/10): 903-924.
[12]MIKIT, LEE J, HWANGBO J, et al. Learning robust perceptive locomotion for quadrupedal robots in the wild[J]. Science Robotics, 2022, 7(62): eabk2822.
[13]HWANGBOJ, LEE J, DOSOVITSKIY A, et al. Learning agile and dynamic motor skills for legged robots[J]. Science Robotics, 2019, 4(26): eaau5872.
[14]LEEJ, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47): eabc5986.
[15]梁启星, 李彬, 李志, 等. 基于模型预测控制的四足机器人斜坡自适应调整算法与实现[J]. 山东大学学报 (工学版), 2021, 51(3): 37-44.
LIANG Q X, LI B, LI Z, et al. Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application[J].Journal of Shandong University(Engineering Science), 2021, 51(3): 37-44. (in Chinese)
[16]HANK C, KIM J Y. Posture stabilizing control of quadruped robot based on cart-inverted pendulum model[J]. Intelligent Service Robotics, 2023,16:521-536.
[17]SOMBOLESTANM, NGUYEN Q. Hierarchical adaptive loco-manipulation control for quadruped robots[C]∥ Proceedings of the 39th International Conference on Robotics and Automation.London, UK: IEEE, 2023:12156-12162.
[18]张国腾, 荣学文, 李贻斌, 等. 基于虚拟模型的四足机器人对角小跑步态控制方法[J]. 机器人, 2016, 38(1): 64-74.
ZHANG G T,RONG X W,LI Y B, et al. Control of the quadrupedal trotting based on virtual model[J]. Robot, 2016, 38(1): 64-74.(in Chuese)
[19]ZHAOJ X, YAO Q C, XING B Y, et al. One-legged hop of compliance control based on minimum-jerk[J].Journal of Physics Conference Series, 2020, 1507(5): 052012.
[20]孟健,李贻斌,李彬.四足机器人跳跃步态控制方法[J].山东大学学报(工学版),2015,45(3):28-34.
MENG J, LI Y B, LI B, et al . Bound gait controlling method of quadruped robot[J].Journal of Shandong University (Engineering Science),2015,45(3):28-34. (in Chinese)
[21]PARKH W, PARK S, KIM S. Variable-speed quadrupedal bounding using impulse planning:Untethered high-speed 3D Running of MIT Cheetah 2[C]∥ Proceedings of the 31st International Conference on Robotics and Automation. Seattle, WA,US: IEEE, 2015: 5163-5170.
[22]BJELONICM. Planning and control for hybrid locomotion of wheeled-legged robots[D]. ETH Zurich, 2021.
[23]HOELLERD, RUDIN N, SAKO D, et al. Learning agile navigation for quadrupedal robots[DB/OL]. (2023-06-26) [2023-12-03].https:∥arxiv.org/abs/2306.14874.
[24]HANL, ZHU Q, SHENG J, et al. Lifelike agility and play on quadrupedal robots using reinforcement learning and generative pre-trained models[DB/OL]. (2023-08-29) [2023-12-03].https:∥arxiv.org/abs/2308.15143.
[25]NGUYENQ, POWELL M J, KATZ B, et al. Optimized jumping on the mit cheetah 3 robot[C]∥Proceedings of the 35th International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 7448-7454.
[26]CHIGNOLIM M T. Trajectory optimization for dynamic aerial motions of legged robots[D]. Cambridge, MA,US:MIT, 2021.br>br>

6

Accesses

0

Citation

Detail

Sections
Recommended

/