A Digital Twin System Model of Unmanned Cooperative Game

LI Zhengjun;DENG Changming

Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (S2) : 209-222. DOI: 10.12382/bgxb.2023.0794
Paper

A Digital Twin System Model of Unmanned Cooperative Game

  • LI Zhengjun, DENG Changming*
Author information +
History +

Abstract

Based on the background of the rapid development of unmanned cooperative game and approaching to the actual combat, a digital twin system model of unmanned cooperative game is constructed by combining the digital twin technology, and a system architecture of the unmanned intelligent game is built, so as to promote the research and practice of unmanned cooperative game twin simulation. The relevant war cases are inductively analyzed based on KJ method, and then future war styles are deduced, and a deductive reasoning is carried out on the elements and organisational relationships of the unmanned cooperative gaming system.The game matrix, game function and optimization equation matrix of unmanned cooperative game are constructed to establish an optimization model of unmanned cooperative game situational awareness and game scheme, for achieving the global optimum of the stage gaming scheme.Combined with the digital twin technology, a digital twin structure model is constructed from the physical layer, virtual layer, service layer, data layer and data connection. and the technology system of this model is sorted out. It provides a theoretical framework for the real-virtual synchronisation, interactive operation, visual interface and intelligent decision-making of unmanned cooperative game, and provides a reference for the construction of unmanned cooperative game system in the future.

Key words

unmannedcooperativegame / systemanalysis / digitaltwin / technologysystem

Cite this article

Download Citations
LI Zhengjun, DENG Changming. A Digital Twin System Model of Unmanned Cooperative Game. Acta Armamentarii. 2023, 44(S2): 209-222 https://doi.org/10.12382/bgxb.2023.0794

References

[1]王耀南,安果维,王传成,等. 智能无人系统技术应用与发展趋势[J]. 中国舰船研究, 2022, 17(5): 9-26.
WANG Y N, AN G W, WANG C C, et al. Technology application and development trend of intelligent unmanned system[J]. Chinese Journal of Ship Research, 2022, 17(5): 9-26. (in Chinese)
[2]初军田,张武,丁超,等. 跨域无人系统协同作战需求分析[J]. 指挥信息系统与技术, 2022, 13(6): 1-8.
CHU J T, ZHANG W, DING C, et al. Requirement analysis on cross-domain unmanned system cooperative operation[J]. Command Information System and Technology, 2022, 13(6): 1-8. (in Chinese)
[3]宓铁良,段方,郭育青. 基于Do DAF理论的无人作战体系标准化研究[C]∥中国航天电子技术研究院科学技术委员会2020年学术年会. 北京: 中国空间电子技术研究院委员会,2020.
MI T L,DUAN F,GUO Y Q. Unmanned combat system standardisation study based on DoDAF theory[C]∥Proceedings of the 2020 Academic Annual Meeting of Science and Technology Committee of China Academy of Space Electronics Technology. Beijing, China: Science and Technology Committee of China Academy of Space Electronics Technology,2020. (in Chinese)
[4]范博洋,赵高鹏,薄煜明,等. 多目标空地异构无人系统协同任务分配方法[J]. 兵工学报, 2023, 44(6): 1564-1575.
FAN B Y, ZHAO G P, BO Y M, et al. Collaborative task allocation method for multi-target air-ground heterogeneous unmanned system[J]. Acta Armamentarii, 2023, 44(6): 1564-1575.(in Chinese)
[5]魏强,张冬梅,范勇生. 多无人系统协同视觉SLAM算法[J]. 载人航天, 2023, 29(1): 29-35.
WEI Q, ZHANG D M, FAN Y S. Collaborative vision SLAM algorithm for multiple unmanned systems[J]. Manned Space Flight, 2023, 29(1): 29-35. (in Chinese)
[6]张建东,王鼎涵,杨啟明,等. 基于分层强化学习的无人机空战多维决策[J]. 兵工学报, 2023, 44(6): 1547-1563.
ZHANG J D, WANG D H, YANG Q M, et al. Multi-dimensional decision-making for UAV air combat based on hierarchical reinforcement learning[J]. Acta Armamentarii, 2023, 44(6): 1547-1563. (in Chinese)
[7]PPOPEA P, IDE J S, MIAC'U2OVIAC'U2 D, et al. Hierarchical reinforcement learning for air-to-air combat[C]∥Proceedings of the 2021 International Conference on Unmanned Aircraft Systems . Athens, Greece: IEEE, 2021: 275-284.
[8]赵明皓,张翠萍,李宝安. 基于深度强化学习的无人艇控制应用研究[C]∥第八届中国指挥控制大会论文集. 北京:国防工业出版社, 2020.
ZHAO M H,ZHANG C P,LI B A. An applied study of unmanned boat control based on deep reinforcement learning: [C]∥Proceedings of the 8th China Command and Control Conference. Beijing,China: National Defense Industry Press,2020. (in Chinese)
[9]苏思,周万宁,吕亚飞,等. 海战场无人平台作战指挥模型体系管理与检验研究[J]. 舰船科学技术, 2022, 44(24): 87-90.
SU S, ZHOU W N, L Y F, et al. Study on operation command and control system management and evaluation for sea battlefield unmanned platform[J]. Ship Science and Technology, 2022, 44(24):87-90. (in Chinese)
[10]靳崇,张宾,麻志强,等. 面向无人化陆战的指挥控制系统智能化运用[J]. 火力与指挥控制, 2021, 46(11): 12-19.
JIN C , ZHANG B , MA Z Q, et al. Intelligent application of the command and control system for unmanned-oriented land warfare[J]. Fire Control & Command Control, 2021, 46(11): 12-19. (in Chinese)
[11]周芳,铁清木,丁冉,等. 面向指挥决策支持的数字孪生系统[J]. 指挥信息系统与技术, 2022, 13(4): 14-18, 39.
ZHOU F, TIE Q M, DING R, et al. Digitaltwin system for command decision support[J]. Command Information System and Technology, 2022, 13(4): 14-18, 39. (in Chinese)
[12]王旭东,陈奡,宦国杨,等. 面向作战指挥的数字孪生应用[J]. 指挥信息系统与技术, 2021, 12(6): 26-32.
WANG X D, CHEN A, HUAN G Y, et al. Application of digital twin for command and control[J]. Command Information System and Technology, 2021, 12(6): 26-32. (in Chinese)
[13]邓烨,奉祁林,赵健. 数字孪生战场建设探讨[J]. 防护工程, 2020, 42(3): 58-64.
DENG Y, FENG Q L, ZHAO J. Discussion on construction of digital twin battlefield[J]. Protective Engineering, 2020, 42(3):58-64. (in Chinese)
[14]纪广,郝建国,张振伟. 面向无人机作战的虚拟孪生系统设计方案[J]. 兵工学报, 2022, 43(8): 1902-1912.
JI G, HAO J G, ZHANG Z W. Designscheme of virtual twin system for UAV combat[J]. Acta Armamentarii, 2022, 43(8): 1902-1912. (in Chinese)
[15]JIG, HAO J G, GAO J L, et al. Digital twin modeling method for individual combat quadrotor UAV[C]∥Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI).Beijing, China: IEEE, 2021: 1-4.
[16]YANGJ F, HUANG C M, WANG J R. The study and development of UAV digital twin system[J]. Journal of Physics: Conference Series, 2022, 2366: 12038.
[17]邱保金,李学坤,帅敏. 基于TRIZ理论与KJ法的办公区域储物柜创新设计[J]. 包装工程, 2022, 43(24): 385-391.
QIU B J, LI X K,SHUAI M.Innovative design of office lockers based on TRIZ theory and KJ method[J]. Packaging Engineering, 2022, 43(24): 385-391. (in Chinese)
[18]赵柱,王毅,樊芮锋,等. 基于多主体NetLogo平台的反无人机OODA体系对抗建模[J]. 系统仿真学报, 2021, 33(8): 1791-1800.
ZHAO Z, WANG Y, FAN R F, et al. Modeling onanti-UAV system-of-systems combat OODA loop based on NetLogo[J]. Journal of System Simulation, 2021, 33(8): 1791-1800. (in Chinese)
[19]陈黎,李芳芳,冯清江,等. 一种基于OODA-A环的防空体系及其作战时效分析[J]. 指挥与控制学报, 2021, 7(4): 383-388.
CHEN L, LI F F, FENG Q J, et al. Combat timeliness analysis of air defense system-of-systems based on OODA-A loop[J]. Journal of Command and Control, 2021, 7(4): 383-388. (in Chinese)
[20]陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.
TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. (in Chinese)
[21]陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. (in Chinese)
[22]阎劲松,沙勇忠,王峥嵘. 公共协商视角的网络问政规则要素提取及构建[J]. 图书与情报, 2022(2): 48-56.
YAN J S,SHA Y Z,WANG Z R. The elements extraction and construction of rules of network politics from the perspective of public deliberation[J]. Library & Information, 2022(2): 48-56. (in Chinese)
[23]徐彤. 抗美援朝战争的出兵战机运筹研究[J]. 军事历史, 2023(1): 36-44.
XU T. Anoperational research on the timing to send the forces in the war to resist US aggression and aid North Korea[J]. Military History, 2023(1): 36-44. (in Chinese)
[24]邵青. 中印边境战争史实辩析[J]. 军事历史研究, 1999(4): 148-154.
SHAO Q. A Debate on the historical facts of the Sino-Indian border War[J]. Military History Research, 1999(4): 148-154. (in Chinese)
[25]龙沛. 两伊战争制空权争夺与战局联动关系研究[D]. 重庆:西南大学, 2018.
LONG P. A Research on the relationships between the airpower struggle and the war situation in the Iran-Irag War[D]. Chongqing:Southwest University, 2018. (in Chinese)
[26]大卫·威科勒,张艳明,周丽娅. 侥幸的胜利改变了海军的潮流——马岛战争:美英现代海军发展的分水岭[J]. 国际展望, 2004(10): 38-41.
WINKLER D,ZHANG Y M,ZHOU L Y. A fluke fictory changes the naval tide-The Battle of the Isle of Man: a watershed in the development of the modern US and British navies[J]. Global Review, 2004(10): 38-41. (in Chinese)
[27]朱涛,李淋杰,凌海风. 无人机在叙利亚战争中的作战运用与启示[J]. 飞航导弹, 2018(11): 31-34.
ZHU T,LI L J,LING H F. The operational use of drones in the Syrian War and implications[J]. Aerodynamic Missile Journal, 2018(11): 31-34. (in Chinese)
[28]吴静,蔡海锋,刘俊良. 纳卡地区冲突无人机攻防运用分析及地空反无人对策建议[J]. 现代防御技术, 2021, 49(3): 13-20.
WU J,CAI H F,LIU J L. Analysis on the operation of attack and defense of UAVs in Naka conflict and suggestions for ground-to-air anti-UAVs[J]. Modern Defence Technology, 2021, 49(3): 13-20.(in Chinese)
[29]宋洁璇,杨航,吴戈男,等. 从俄乌冲突看典型陆战场天基信息战术应用[J]. 中国军转民, 2023(19): 146-147.
SONG J X,YANG H,WU G N, et al. Tactical applications of space-based information for the typical land battlefield in the light of the Russian-Ukrainian conflict[J].Defence Industry Conversion in China, 2023(19): 146-147. (in Chinese)
[30]杨斌. 空中分布式作战概念及关键技术分析[J]. 电讯技术, 2022, 62(6): 826-835.
YANG B. Concepts andkey technology analysis for air distributed operations[J]. Telecommunication Engineering, 2022, 62(6): 826-835. (in Chinese)
[31]张为华. 战场环境概论[M]. 北京: 科学出版社, 2013.
ZHANG W H. Introduction to the battlefield environment[M]. Beijing: Science Press, 2013. (in Chinese)
[32]李昌玺,于军,徐颖,等. 联合作战条件下战场态势感知体系构建问题研究[J]. 中国电子科学研究院学报, 2018, 13(6):680-684.
LI C X, YU J, XU Y, et al. Constructionproblem study on battlefield situation awareness system under joint operation[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(6): 680-684. (in Chinese)
[33]孙盛智,侯妍. 太空信息对联合作战能力影响研究[J]. 飞航导弹,2019(1): 64-68.
SUN S Z,HOU Y. Study of the impact of space information on joint warfighting capabilities[J]. Aerodynamic Missile Journal, 2019(1): 64-68. (in Chinese)
[34]张靓. 战场电磁态势生成内涵与体系架构综述[J]. 舰船电子对抗, 2022, 45(1): 6-10, 27.
ZHANG L. Overview of the connotation and architecture of battlefield electromagnetic situation generation[J]. Shipboard Electronic Countermeasure, 2022, 45(1): 6-10, 27. (in Chinese)
[35]全杰,贺庆. 跨域融合机理与运用研究[J]. 中国电子科学研究院学报, 2021, 16(12): 1205-1214.
QUAN J, HE Q. Research on mechanism and application of cross-domain synergy[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(12): 1205-1214. (in Chinese)
[36]刘网定,张国宁,郑世明. 基于深度强化学习的作战实体智能感知与决策研究[J]. 火力与指挥控制, 2023, 48(5): 164-169.
LIU W D, ZHANG G N, ZHENG S M. Research on intelligent perception and decision-making of combat entities based on deep reinforcement learning[J]. Fire Control & Command Control, 2023, 48(5): 164-169. (in Chinese)
[37]王亚儒,张勇,邸江芬. 基于知识图谱的战法知识库构建技术[J]. 火力与指挥控制, 2022, 47(6): 158-161, 170.
WANG Y R, ZHANG Y, DI J F. Construction technology of knowledge base about operational methods based on knowledge graph[J]. Fire Control & Command Control, 2022, 47(6): 158-161,170. (in Chinese)
[38]周芳,毛少杰,吴云超,等. 实时态势数据驱动的平行仿真推演方法[J]. 中国电子科学研究院学报, 2020, 15(4): 323-328.
ZHOU F , MAO S J, WU Y C, et al. Aparallel simulation deduce method based on real-time situation data driven[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(4): 323-328. (in Chinese)
[39]李智,吕铁鑫,潘艳辉. 联合全域作战智能博弈优化一体化决策问题[J]. 火力与指挥控制, 2023, 48(3): 1-8.
LI Z, L T X, PAN Y H. Research on integrated decision-making problems of intelligent game ptimization in JADO[J]. Fire Control & Command Control, 2023, 48(3): 1-8. (in Chinese)
[40]丁蕊. 复杂高维多目标优化方法[M]. 北京: 电子工业出版社, 2020.
DING R. Complex high-dimensional multi-objective optimisation methods[M]. Beijing: Publishing House of Electronics Industry, 2020. (in Chinese)
[41]李航,刘代金,刘禹. 军事智能博弈对抗系统设计框架研究[J]. 火力与指挥控制, 2020, 45(9): 116-121.
LI H, LIU D J, LIU Y. Architecture design research of military intelligent wargame system[J]. Fire Control & Command Control, 2020, 45(9): 116-121. (in Chinese)
[42]HUANGX F. Ageneral framework for constructing cooperative global optimization algorithms[C]∥FLOUDAS C A, PARDALOS P. Boston, MA,US: Springer , 2004:197-221.
[43]饶小康,马瑞,张力,等. 基于GIS+BIM+IoT数字孪生的堤防工程安全管理平台研究[J]. 中国农村水利水电, 2022(1): 1-7.
RAO X K,MA R,ZHANG L. Study anddesign of dike engineering safety management system based on GIS+BIM+IoT digital twin[J]. China Rural Water and Hydropower, 2022(1): 1-7. (in Chinese)
[44]丁柏圆,穆富岭,李云鹏,等. 面向复杂电磁环境的体系作战仿真平台设计[J]. 系统仿真学报, 2023, 35(2): 330-338.
DING B Y, MU F L, LI Y P, et al. Design of system combat simulation platform for complex electromagnetic environment[J]. Journal of System Simulation, 2023, 35(2): 330-338. (in Chinese)
[45]肖彬,李琳琳,张文瑾. 美军战术级指挥信息系统界面设计的发展及启示[J]. 火力与指挥控制, 2021, 46(2): 11-16.
XIAO B, LI L L, ZHANG W J. Development andinspiration of interface design in tactical-C4ISR system of the U.S.Army[J]. Fire Control & Command Control, 2021, 46(2): 11-16. (in Chinese)
[46]刘岗,陈超,赵轶男,等. 作战指挥控制系统人机交互设计流程研究[J]. 包装工程, 2020, 41(14): 85-91.
LIU G, CHEN C, ZHAO Y N, et al. Human-computerinteraction design process of command and control system[J]. Packaging Engineering, 2020, 41(14): 85-91. (in Chinese)
[47]张祖磊. 基于强化学习的进攻防御作战辅助决策系统设计[D]. 西安: 西安电子科技大学, 2022.
ZHANG Z L. Design of reinforcement learning based aided decision making system for offensive and defensive operations[D]. Xi'an: Xidian University, 2022. (in Chinese)
[48]于佳慧,孙宇祥,项祺,等. 元宇宙赋能指挥控制:未来虚实融生的作战推演[J]. 指挥与控制学报, 2022, 8(3): 260-269.
YU J H,SUN Y X,XIANG Q, et al. Metaverse enabling command and control: Combat deduction of virtual reality in the future[J]. Journal of Command and Control, 2022, 8(3): 260- 269. (in Chinese)
[49]ZHANGM, TAO F,HUANG B Q, et al. Digital twin data: methods and key technologies[J]. Digital Twin, 2021, 1: 2.
[50]张晓芳,程瑞龙,张子瑜. 多机器人虚实一体化协作工作站设计与实现[J]. 现代制造工程, 2022(10): 27-33.
ZHANG X F, CHENG R L, ZHANG Z Y. Design and realization of multi robot cooperative system with virtual-actual integration[J]. Modern Manufacturing Engineering, 2022(10): 27-33. (in Chinese)
[51]曹小华,李泊桓,徐上尉. 基于MQTT协议的物联网岸电监控系统[J]. 计算机应用与软件, 2023, 40(3): 11-16, 27.
CAO X H, LI B H, XU S W. Shore power monitering system of internet of things based on MQTT protocol[J]. Computer Applications and Software, 2023, 40(3): 11-16, 27. (in Chinese)
[52]陶飞,张辰源,刘蔚然,等. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215.
TAO F,ZHANG C Y,LIU W R, et al. Digital engineering and its ten application outlooks[J]. Journal of Mechanical Engineering 2023, 59(13): 193-215. (in Chinese)
[53]李博骁,包钊源,陆泽健,等. 面向空天预警的多源异构装备一体化协同探测技术研究[J]. 现代雷达, 2023, 45(6): 51-56.
LI B X,BAO D Y,LU Z J, et al. A Study onintegrated cooperative detection technology of multisource heterogeneous equipment for air-space early warning[J]. Modern Radar, 2023, 45(6): 51-56. (in Chinese)
[54]李归,伍光新,薛慧,等. 海战场态势生成技术发展综述[J]. 电讯技术, 2022, 62(5): 678-685.
LI G, WU G X, XUE H, et al. Anoverview of situation generation technology for sea battlefield[J]. Telecommunication Engineering, 2022, 62(5): 678-685. (in Chinese)
[55]QIQ L, TAO F, HU T L, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58: 3-21.
[56]陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15.
TAO F, ZHANG H, QI Q L, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1-15. (in Chinese)
[57]张子龙,陈娟,沈晓平. 5G/6G推动下的数据链系统发展设想[J]. 指挥信息系统与技术, 2021, 12(5): 98-104.
ZHANG Z L,CHEN J,SHEN X P. Idea of data Link system development driven by 5G and 6G[J]. Journal of Command and Control, 2021, 12(5): 98-104. (in Chinese)
[58]翟岩龙,孙文心,包天虹,等. 基于微服务的边缘侧仿真方法及框架研究[J]. 系统仿真学报, 2018, 30(12): 4536-4545.
ZHAI Y L, SUN W X, BAO T H, et al. Edge-side simulation method and framework based on micro-services[J]. Journal of System Simulation, 2018, 30(12): 4536-4545. (in Chinese)
[59]武琼. 美国人工智能反恐:路径、动因与挑战[J]. 新疆社会科学, 2022(3): 103-112.
WU Q. U.S. Artificia lintelligence counterterrorism: Paths, motivations, and challenges[J]. Social Sciences in Xinjiang, 2022(3): 103-112. (in Chinese)
[60]张梦钰,豆亚杰,陈子夷,等. 深度强化学习及其在军事领域中的应用综述[J/OL]. 系统工程与电子技术.
https:∥kns.cnki.net/kcms/detail/11.2422.TN.20221025.1142.014.html.
ZHANG M Y,DOU Y J,CHEN Z Y, et al. Deep reinforcement learning and its applications in military field[J/OL]. Journal of Systems Engineering and Electronics.
https:∥kns.cnki.net/kcms/detail/11.2422.TN.20221025.1142.014.html
. (in Chinese)
[61]陆平静,熊泽宇,赖明澈. 高性能计算技术及标准现状分析[J]. 计算机科学,2023,50(11): 1-7.
LU P J,XIONG Z Y,LAN M C. Survey onhigh-performance computing technology and Standards[J]. Computer Science, 2023,50(11): 1-7. (in Chinese)br>br>

17

Accesses

0

Citation

Detail

Sections
Recommended

/