A Configuration Synthesis Method of Reconfigurable and Decoupled Wheel-legged Mechanical Leg

PAN Wuxing, LI Ruiqin

PDF(4826 KB)
PDF(4826 KB)
Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (8) : 2658-2666. DOI: 10.12382/bgxb.2023.0398
Paper

A Configuration Synthesis Method of Reconfigurable and Decoupled Wheel-legged Mechanical Leg

  • PAN Wuxing, LI Ruiqin*
Author information +
History +

Abstract

A set of fully-decoupled reconfigurable wheel-legged hybrid mechanical leg configurations are synthesized based on the screw theory and the motion bifurcation principle of reconfigurable mechanism. According to the degree of freedom requirements of wheel-leg mode, the wheel-leg transformation mechanism is analyzed, and then five kinds of main motion limbs are synthesized and selected. The principle and scheme of constraint limb arrangement are proposed based on the wheel-leg transformation mechanism, and the constraint limbs are obtained based on the screw theory. According to the geometric conditions of the main motion limbs and the constraint limbs, the axis transformation of the kinematic pair and the decomposition and combination of the kinematic pair are carried out, and 134 constraint limbs are finally obtained. Based on the concept of motion decoupling of parallel mechanism, the selection condition of driving pair is derived, and the position of driving pair in each constraint limb is determined. The correctness of the mechanism synthesis method is verified by an example. The synthesized mechanical leg realizes the wheel-leg mode switching based on constraint singularity, which reduces the time consumption required for configuration transformation and makes mode switching more efficient. In addition, there is no need to lock the joints related to leg mode motion during wheel motion due to the existence of structural constraints, which reduces energy consumption and driving control difficulty.

Key words

wheel-leggedmechanicalleg / configurationsynthesis / constraintlimb / reconfigurablility / decoupling

Cite this article

Download Citations
PAN Wuxing, LI Ruiqin. A Configuration Synthesis Method of Reconfigurable and Decoupled Wheel-legged Mechanical Leg. Acta Armamentarii. 2024, 45(8): 2658-2666 https://doi.org/10.12382/bgxb.2023.0398

References

[1]褚宏鹏, 祁柏, 王慧奇, 等. 六自由度轮式并联机器人及其构型方法[J]. 机械工程学报, 2023, 59(3): 46-53.
CHU H P, QI B, WANG H Q, et al. 6-DOF wheeled parallel robot and its design method[J]. Journal of Mechanical Engineering, 2023, 59(3): 46-53. (in Chinese)
[2]BOUMANA, GINTING M F, ALATUR N, et al. Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion[C]∥Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, US: IEEE, 2020: 2518-2525.
[3]SHENTUS Z, XIE F G, LIU X J, et al. Motion control and trajectory planning for obstacle avoidance of the mobile parallel robot driven by three tracked vehicles[J]. Robotica, 2021, 39(6):1037-1050.
[4]SHENY J, CHEN G R, LI Z Y, et al. Cooperative control strategy of wheel-legged robot based on attitude balance[J]. Robotica, 2023, 41: 566-586.
[5]张硕, 姚建涛, 许允斗, 等. 形态可重构移动机器人行走机构设计与分析[J]. 农业机械学报, 2019, 50(8): 418-426.
ZHANG S, YAO J T, XU Y D, et al. Design and analysis of moving mechanism of shape reconfigurable mobile robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 418-426. (in Chinese)
[6]BRUZZONE L, BAGGETTA M, NODEHI S E, et al. Functional design of a hybrid leg-wheel-track ground mobile robot[J]. Machines, 2021, 9(1): 10.
[7]姜祎, 王挺, 邵沛瑶, 等. 一种轮腿复合型机器人的步态研究与越障性能分析[J]. 兵工学报, 2023, 44(1): 247-259.
JIANG Y, WANG T, SHAO P Y, et al. Gait study and obstacle-surmounting performance analysis of wheel-leg hybrid robot[J]. Acta Armamentarii, 2023, 44(1): 247-259. (in Chinese)
[8]CHEN S C, HUANG K J, CHEN W H, et al. Quattroped: a leg-wheel transformable robot[J]. IEEE-ASME Transactions on Mechatronics, 2014, 19(2): 730-742.
[9]DING X L, YANG F. Study on hexapod robot manipulation using legs[J]. Robotica, 2016, 34(2): 468-481.
[10]董世豪. 基于魔方机构的轮腿式移动变胞机器人设计研究[D]. 秦皇岛: 燕山大学, 2022.
DONG S H. Design and research of wheel leg mobile metamorphic robot based on rubik's cube mechanism[D]. Qinhuangdao: Yanshan University, 2022. (in Chinese)
[11]曲梦可, 王洪波, 荣誉. 轮腿混合机器人机械腿动力学建模与驱动预估[J]. 兵工学报, 2017, 38(8): 1619-1629.
QU M K, WANG H B, RONG Y. Dynamic modeling and driving parameter prediction of mechanical leg of wheel-leg hybrid robot[J]. Acta Armamentarii, 2017, 38(8): 1619-1629. (in Chinese)
[12]WILCOXB H, LITWIN T E, BIESIADECKI J J, et al. ATHLETE: a cargo handling and manipulation robot for the moon[J]. Journal of Field Robotics, 2007, 24(5): 421-434.
[13]MEDEIROS V S, JELAVIC E, BJELONIC M, et al. Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4172-4179.
[14]王修文,汪首坤,王军政, 等.基于异形Stewart平台的电动并联式六轮足机器人[J].机械工程学报, 2020, 56(13): 84-92.
WANG X W, WANG S K, WANG Z J, et al. Parallel electric six-wheeled-foot robot based on special-shaped stewart platform[J]. Journal of mechanical engineering, 2020, 56(13): 84-92. (in Chinese)
[15]罗洋,李奇敏,温皓宇.一种新型轮腿式机器人设计与分析[J].中国机械工程, 2013, 24(22): 3018-3023.
LUO Y, LI Q M, WEN H Y. Design and analysis of a new kind of wheel-legged rover[J]. China Mechanical Engineering, 2013, 24(22): 3018-3023. (in Chinese)
[16]CUI L L, WANG S , ZHANG J F, et al. Learning-based balance control of wheel-legged robots[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7667-7674.
[17]SARANLI U, BUEHLER M, KODITSCHEK D. RHex: a simple and highly mobile hexapod robot[J]. International Journal of Robotics Research, 2001, 20(7): 616-631.
[18]EICH M, GRIMMINGER F, KIRCHNER F. A versatile stair-climbing robot for search and rescue application[C]∥ Proceedings of the 2008 IEEE International Workshop on Safety, Security and Rescue Robotics. Sendai, Japan:IEEE, 2008: 35-40.
[19]QUINNR D, OFF J T, KINGSLEY D A, et al. Improved mobility through abstracted biological principles[C]∥ Proceedings of the 2002 IEEE/RSI Intl. Conference on Intelligent Robots and Systems EPFL. Lausanne, Switzerland:IEEE, 2008: 2652-2657.
[20]HERV J. Analyse structurelle des mécanismes par groupe des déplacements[J]. Mechanism and Machine Theory, 1978, 13(4):437-450.
[21]HUANG Z, LI Q C. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J]. The International Journal of Robotics Research, 2002, 21(2): 131-145.
[22]GAO F, LI W M, ZHAO X C, et al. New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs[J]. Mechanism and Machine Theory, 2002, 37(11): 1395-1411.
[23]LI L Q, FANG Y T, YAO J Q, et al. Type synthesis of a family of novel parallel leg mechanisms driven by a 3-DOF drive system[J]. Mechanism and Machine Theory, 2022, 167: 104572.
[24]HE J, GAO F. Type synthesis for bionic quadruped walking robots[J]. Journal of Bionic Engineering, 2015, 12(4): 527-538.
[25]张金柱. 易防护机械腿六足机器人机构学研究[D]. 秦皇岛: 燕山大学, 2022.
ZHANG J Z. Mechanism research of a hexapod robot with protectable mechanical legs[D]. Qinhuangdao: Yanshan University, 2018. (in Chinese)
[26]孙天宇. 具有并联机构腿的全向步行机器人设计研究[D]. 北京: 北京交通大学, 2022.
SUN T Y. Design and research of omnidirectional walking robot with parallel mechanical legs[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
[27]陈佳丽, 许勇, 刘文彩. 步行式加工机器人解耦并联机械腿构型综合[J]. 机械传动, 2019, 43(9): 41-49.
CHEN J L, XU Y, LIU W C. Configuration synthesis of decoupled parallel mechanical leg of walking machining robot[J]. Journal of Mechanical Transmission, 2019, 43(9): 41-49. (in Chinese)
[28]魏俊, 贾维涵, 刘承磊, 等. 驱动支链完全解耦的可重构踝关节康复并联机构型综合[J]. 机械工程学报, 2022, 58(19):45-56.
WEI J, JIA W H, LIU C L, et al. Type synthesis of reconfigurable parallel mechanisms for ankle rehabilitation with completely decoupled actuated limb[J]. Journal of Mechanical Engineering, 2022, 58(19): 45-56. (in Chinese)
[29]ZHANGY B, ZHAO Y F, JING X L. Type synthesis of uncoupled translational parallel manipulators based on actuation wrench screw theory[J]. Advances in Mechanical Engineering, 2018, 10(1): 1-10.br>br>
PDF(4826 KB)

18

Accesses

0

Citation

Detail

Sections
Recommended

/