A Rapid and Near Analytic Planning Method for Gliding Trajectory under Time Constraints

WANG Peichen, YAN Xunliang, NAN Wenjiang, LI Xinguo

PDF(4793 KB)
PDF(4793 KB)
Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7) : 2294-2305. DOI: 10.12382/bgxb.2023.0343
Paper

A Rapid and Near Analytic Planning Method for Gliding Trajectory under Time Constraints

  • WANG Peichen, YAN Xunliang*, NAN Wenjiang, LI Xinguo
Author information +
History +

Abstract

A rapid trajectory planning method based on drag acceleration-energy profile is proposed for the time controllable re-entry gliding. This method divides the gliding trajectory planning into longitudinal trajectory planning and lateral planning. In the longitudinal trajectory planning, a multi-segment smooth drag acceleration profile based on corridor boundary dual-parameter interpolation is designed, and a method for applying local path angle constraints at the terminal is provided. Then the analytical prediction expressions for time and range considering the influence of Earth rotation are derived, which improves the speed and accuracy of the prediction algorithm. The profile design is then completed by correcting the double profile parameters, while meeting the constraints of terminal energy, range, time, and local path angle. In the lateral planning, the dynamic/static heading angle error corridor method is used to avoid the no-fly zone and adjust the terminal heading, a target range and time correction strategy considering longitudinal and lateral motion coupling is further introduced, and a three-degrees-of-freedom gliding trajectory generation considering time constraints is completed. Finally, the effectiveness and multitasking applicability of the proposed method are verified by taking CAV-H re-entry gliding as an example for simulation. Compared with existing time analytical prediction methods, the proposed prediction method has significant computational efficiency and high computational accuracy. Compared with existing trajectory planning methods based on standard profiles, the proposed planning method has higher terminal accuracy, higher computational efficiency, and a larger time adjustable range, and can also achieve the rapid prediction of flight capability boundaries.

Key words

glidingtrajectoryplanning / timeconstraint / dragaccelerationprofile / predictivecorrection / nearanalysis / capabilityboundaryprediction

Cite this article

Download Citations
WANG Peichen, YAN Xunliang, NAN Wenjiang, LI Xinguo. A Rapid and Near Analytic Planning Method for Gliding Trajectory under Time Constraints. Acta Armamentarii. 2024, 45(7): 2294-2305 https://doi.org/10.12382/bgxb.2023.0343

References

[1]张远龙, 谢愈.滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1):023377.
ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023377. (in Chinese)
[2]赵建博, 杨树兴.多导弹协同制导研究综述[J].航空学报, 2017, 38(1): 020256.
ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020256. (in Chinese)
[3]韩嘉俊, 王小虎, 郝昀, 等.带有时间约束的再入滑翔轨迹设计[J].宇航学报, 2020, 41(4): 438-446.
HAN J J, WANG X H, HAO Y, et al.Reentry trajectory planning with flight time constraints[J].Journal of Astronautics, 2020, 41(4):438-446. (in Chinese)
[4]LIANGZ X, YU J L, REN Z, et al.Trajectory planning for cooperative flight of two hypersonic entry vehicles[C]∥Proceedings of International Space Planes and Hypersonic Systems and Technologies Conferences, Xiamen,China:AIAA, 2017.
[5]HARPOLDJ C, GRAVES C A.Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3):239-268.
[6]SARAFA, LEAVITT J A, CHEN D T, et al.Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
[7]GUOJ, WU X Z, TANG S J.Autonomous gliding entry guidance with geographic constraints[J].Chinese Journal of Aeronautics,2015, 28(5):1343-1354.
[8]XIEY, LIU L H, TANG G J, et al.Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88: 44-60.
[9]SHENZ J, LU P.Onboard generation of three-dimensional constrained entry trajectories[J].Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[10]何睿智.高超声速助推滑翔飞行器全程弹道规划方法研究[D].长沙:国防科学技术大学, 2017.
HE R Z.Study of All-course Trajectory planning approach for hypersonic boost-glide vehicles[D].Changsha:National University of Defense Technology, 2017. (in Chinese)
[11]王肖, 郭杰, 唐胜景,等.基于解析剖面的时间协同再入制导[J].航空学报, 2018, 40(3): 322565.
WANG X, GUO J, TANG S J, et al.Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565. (in Chinese)
[12]王浩凝, 唐胜景, 郭杰,等.带有动态攻角剖面的时间约束再入制导[J]. 空天防御, 2021, 4(1):71-76.
WANG H N, TANG S J, GUO J, et al. Time-constrained reentry guidance with dynamic angle of attack profile[J]. Air Space Defense,2021, 4(1):71-76. (in Chinese)
[13]乔浩, 李师尧, 李新国.多高超声速飞行器静态协同再入制导方法[J].宇航学报, 2020, 41(5): 541-552.
QIAO H, LI S Y, LI X G. Static cooperative reentry guidance method for multi-hypersonic vhicles[J].Journal of Astronautics, 2020, 41(5): 541-552.(in Chinese)
[14]YUJ L, DONG X W, LI Q D, et al.Cooperative guidance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3): 1-16.
[15]LIZ H, BING H, MING H W, et al.Time-coordination entry guidance for multi-hypersonic vehicles[J].Aerospace Science and Technology, 2019, 89: 123-135.
[16]YUW B, CHEN W C, JIANG Z G, et al.Analytical entry guidance for coordinated flight with multiple no-fly-zone constraints[J].Aerospace Science and Technology, 2019,84: 273-290.
[17]方科, 张庆振, 倪昆,等.高超声速飞行器时间协同再入制导[J].航空学报, 2018, 39(5):321958.
FANG K, ZHANG Q Z, NI K, et al.Time-coordination reentry guidance law for hypersonic vehicle[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 321958. (in Chinese)
[18]张晚晴, 余文斌, 李静琳,等.基于纵程解析解的飞行器智能横程机动再入协同制导[J].兵工学报, 2021, 42(7): 1400- 1411.
ZHANG W Q, YU W B, LI J L, et al.Cooperative reentry guidance for intelligent lateral maneuver of hypersonic vehicle based on downrange analytical solution[J].Acta Armamentarii, 2021, 42(7):1400-1411. (in Chinese)
[19]姜鹏, 郭栋, 韩亮, 等.多飞行器再入段时间协同弹道规划方法[J]. 航空学报, 2020, 41(增刊1): 723776.
JIANG P, GUO D, HAN L, et al. Trajectory optimization for cooperative reentry of multiple hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723776. (in Chinese)
[20]黄汉斌, 梁禄扬, 杨业.基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J].航空学报, 2018,39(12):322558.
HUANG H B, LIANG L Y, YANG Y.Reentry trajectory planning and guidance method based on inverse drag acceleration[J].Acta Aeronautica et Astronautica Sinica, 2018,39(12): 322558. (in Chinese)
[21]PHILLIPST H.A common aero vehicle (CAV) model, description, and employment guide[R].Arlington, VA. US: Schafer Corporation for AFRL and AFSPC, 2003:1-12.br>
PDF(4793 KB)

14

Accesses

0

Citation

Detail

Sections
Recommended

/