Study on Physical Characteristics and Shock Wave Behavior of Aluminum Powder Suspension Ignited by Electrical WireExplosion

HAN Ruoyu;YUAN Wei;LI Chen;CAO Yuchen;BAI Jie

Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (12) : 3743-3754. DOI: 10.12382/bgxb.2023.0244
Paper

Study on Physical Characteristics and Shock Wave Behavior of Aluminum Powder Suspension Ignited by Electrical WireExplosion

  • HAN Ruoyu1*, YUAN Wei1, LI Chen2, CAO Yuchen1, BAI Jie1
Author information +
History +

Abstract

Underwater electrical wire explosion driven by a high-power electric pulse is accompanied by physical effects such as shock wave, plasma and strong light radiation. Therefore, it has achieved remarkable results in the underwater explosion simulation and the exploition of unconventional oil and gas. Due to the skin effect and the limited electrical insulation of the equipment, it is often impossible to obtain the required shock wave by increasing the stored energy and load quality without limitation. In this paper, the underwater electrical explosion of copper wire is used to ignite the aluminum powder suspensions with particle sizes of 10 μm and 1 μm to find the mechanism of detonation of aluminum powder suspension to enhance shock wave. The details of space-time evolution of aluminum powder suspension ignited by the electrical explosion are obtained through the diagnosis of electrical physical parameters and high-speed backlight images. The discharge characteristics and ignition mechanism of aluminum powder suspension under electric-hydraulic breakdown and electrical explosion are studied, and the relationship between the stored energy and shock wave is established. It is found that the ignition of aluminum powder suspension by electrical wire explosion is a result of the joint action of near-field shock wave, plasma and strong light radiation, and then the continuously combusting aluminum powder injects energy into the surrounding compressed water layer, which enhances the amplitude, positive action time and impulse of shock wave.

Key words

electricalexplosion / plasma / shockwave / aluminumpowdersuspension / pulsedpowertechnology

Cite this article

Download Citations
HAN Ruoyu, YUAN Wei, LI Chen, CAO Yuchen, BAI Jie. Study on Physical Characteristics and Shock Wave Behavior of Aluminum Powder Suspension Ignited by Electrical WireExplosion. Acta Armamentarii. 2023, 44(12): 3743-3754 https://doi.org/10.12382/bgxb.2023.0244

References

[1]张永民, 姚伟博, 邱爱慈, 等. 金属丝电爆炸现象研究综述[J]. 高电压技术, 2019, 45(8):2668-2680.
ZHANG Y M, YAO W B, QIU A C, et al. Review of wire electrical explosion phenomena[J]. High Voltage Engineering, 2019, 45(8): 2668-2680. (in Chinese)
[2]LEBEDEVS V, FRANK A, RYUTOV D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Review of Modern Physics, 2019, 91(2):025002.
[3]黄显宾, 徐强, 王昆仑, 等. 基于箍缩装置的高能量密度物理实验研究进展[J]. 强激光与粒子束, 2021, 33(1):61-76.
HUANG X B, XU Q, WANG K L, et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33(1):61-76. (in Chinese)
[4]NI Y J, JIN Y, WAN G, et al. Numerical simulation on the pressure wave in a 30 mm electrothermal-chemical gun with the discharge rod plasma generator[J]. Defence Technology, 2019, 15(5):674-679.
[5]赵彦, 曾庆轩, 梁琦. 电爆炸桥箔电导率模型研究[J]. 兵工学报, 2008, 29(8):902-906.
ZHAO Y, ZENG Q X, LIANG Q. Study of theoretical model for conductivity of electric exploding foil[J]. Acta Armamentarii, 2008, 29(8):902-906. (in Chinese)
[6]Л.П.奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
ОРЛЕНКО Л П. Explosion physics[M]. SUN C W, Translated. Beijing: Science Press, 2011.(in Chinese)
[7]刘彦, 吴艳青, 黄风雷, 等. 爆炸物理学基础[M]. 北京: 北京理工大学出版社, 2019.
LIU Y, WU Y Q, HUANG F L, et al. Fundamentals of explosion physics[M]. Beijing: Beijing Institue of Technology Press, 2019. (in Chinese)
[8]张永民, 安世岗, 陈殿赋,等. 可控冲击波增透保德煤矿8#煤层的先导性试验[J]. 煤矿安全, 2019, 50(10): 14-17.
ZHANG Y M, AN S G, CHEN D F, et al. Preliminary tests of coal reservoir permeability enhancement by controllable shock waves in Baode Coal Mine 8# coal seam[J]. Safety in Coal Mines, 2019, 50(10): 14-17. (in Chinese)
[9]王树山, 贾曦雨, 高源, 等. 水下爆炸动力学的起源,发展与展望[J]. 水下无人系统学报, 2023, 31(1): 10-29.
WANG S S, JIA X Y, GAO Y, et al. Underwater explosion dynamics: its origin, development, and prospect[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 10-29. (in Chinese)
[10]KRASIKY E, EFIMOV S, SHEFTMAN D, et al. Underwater electrical explosion of wires and wire arrays and generation of converging shock waves[J]. IEEE Transactions on Plasma Science, 2016, 44(4): 412-431.
[11]韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3): 766-777.
HAN R Y, LI L X, QIAN D, et al. Exploding metal wires in liquid: current situation and prospects[J]High Voltage Engineering, 2021, 47(3): 766-777. (in Chinese)
[12]EFIMOVS, GUROVICH V T, BAZALITSKI G, et al. Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion[J]. Journal of Applied Physics, 2009, 106(7): 073308.
[13]张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4):1009-1017.
ZHANG Y M, QIU A C, ZHOU H B, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017. (in Chinese)
[14]姚伟博, 杨海亮, 徐海斌, 等. 超长金属丝电爆炸等离子体的轴向光辐射均匀性[J]. 高电压技术, 2022, 48(12): 5102-5109.
YAO W B, YANG H L, XU H B, et al. Axial uniformity of pulsed intense flash of extra-long metal wire electrical explosive plasma[J]. High Voltage Engineering, 2022, 48(12): 5102-5109. (in Chinese)
[15]HANR Y, ZHOU H B, LIU Q J, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12):3999-4008.
[16]ZHOUH B, HAN R Y, LIU Q J, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: II. influence of wire configuration and stored energy[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4009-4016.
[17]ZHOUH B, ZHANG Y M, LI H L, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: III. shock wave characteristics with three discharge loads[J]. IEEE Transactions on Plasma Science, 2015, 43(12):4017-4023.
[18]HAN R Y, WU J, ZHOU H B, et al. Parameter regulation of underwater shock waves based on exploding-wire-ignited energetic materials[J]. Journal of Applied Physics, 2019, 125(15):153302.
[19]YANUKAD, ROSOSHEK A, KRASIK Y E. Comparison of electrical explosions of Cu and Al wires in water and glycerol[J]. Physics of Plasmas, 2017, 24(5):5945-502.
[20]ROSOSHEK A, EFIMOV S, TEWARI S V, et al. Comparison of electrical explosions of spherical wire arrays in water and glycerol on different timescales[J]. Physics of Plasmas, 2018, 25(6): 062709.
[21]SHI H T, HU Y, LI T, et al. Detonation of a nitromethane-based energetic mixture driven by electrical wire explosion[J]. Journal of Physics D: Applied Physics, 2021, 55(5): 05LT01.
[22]ZHOU Z Q, NIE J X, OU Z C, et al. Effects of the aluminum content on the shock wave pressure and the acceleration ability of RDX-based aluminized explosives[J]. Journal of Applied Physics, 2014, 116(14): 144906.
[23]续晗, 罗永晨, 倪晓冬,等. 铝粉燃料连续旋转爆轰发动机工作特性[J].兵工学报, 2022, 43(5):1046-1053.
XU H, LUO Y C, NI X D, et al. Operating characteristics of aluminum powder rotating detonation engine[J]. Acta Armamentarii, 2022, 43(5):1046-1053. (in Chinese)
[24]方伟, 赵省向, 张奇,等. 含微/纳米铝粉燃料空气炸药爆炸特性[J].含能材料, 2021, 29(10):971-976.
FANG W, ZHAO S X, ZHANG Q, et al. Explosion characteristics of fuel-air explosive containing micro/nano-aluminum powder[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 971-976.(in Chinese)
[25]EFIMOV S, GILBURD L, FEDOTOV G A, et al. Aluminum micro-particles combustion ignited by underwater electrical wire explosion[J]. Shock Waves, 2012, 22: 207-214.
[26]陈显河. 铝/水燃烧水下动力系统及其燃烧组织技术研究[D]. 长沙:国防科学技术大学, 2018.
CHEN X H. Reaearch on the underwater propulsion system and combustion thchnology based on aluminum and water combustion [D]. Changsha:National University of Defense Technology, 2018.(in Chinese)
[27]袁伟, 韩若愚, 李琛, 等. 水中金属丝爆引燃铝粉悬浮液冲击波增强效应[J]. 强激光与粒子束, 2022, 34(7):118-123.
YUAN W, HAN R Y, LI C, et al. Enhancement of underwater shock waves generated by exploding-wire-initiated reactions of aluminum powder suspension[J]. High Power Laser and Particle Beams, 2022, 34(7):118-123. (in Chinese)
[28]SARKISOVG S, ROSENTHAL S E, STRUVE K W. Thermodynamical calculation of metal heating in nanosecond exploding wire and foil experiments[J]. Review of scientific instruments, 2007, 78(4): 043505.
[29]GRINENKO A, EFIMOV S, FEDOTOV A, et al. Efficiency of the shock wave generation caused by underwater electrical wire explosion[J]. Journal of applied physics, 2006, 100(11): 113509.
[30]TUCKER T J, TOTH R P. EBW1: a computer code for the prediction of the behavior of electrical circuits containing exploding wire elements: SAND-75-0041[R]. Albuquerque, NM, US:Sandia National Laboratory, 1975.
[31]HAN R Y, LI C, OUYANG J, et al. Electrical explosion across gas-liquid interface: aerosol breakdown, shock waves, and cavity dynamics[J]. Physics of Fluids, 2021, 33(7): 077115.
[32]吴宁,张琪, 曲占庆. 固体颗粒在液体中沉降速度的计算方法评述[J]. 石油钻采工艺, 2000, 22(2): 51-53.
WU N, ZHANG Q, QU Z Q. Evaluation on calculation methods of solid particle setting velocity in fluid[J]. Oil Drilling & Production Technology, 2000, 22(2): 51-53. (in Chinese)
[33]LIU Y, REN Y J, LIU S W, et al. Comparison and analysis of shockwave characteristics between underwater pulsed discharge and metal wire explosion[J]. Physics of Plasmas, 2020, 27(3):033503.
[34]李鑫, 赵凤起, 郝海霞,等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报, 2014, 35(5):640-647.
LI X, ZHAO F Q, HAO H X, et al. Research on ignition and combustion properties of different micro/ nano-aluminum powders[J]. Acta Armamentarii, 2014, 35(5):640-647. (in Chinese)
[35]STOBBS J M, NOVAC B M, SENIOR P, et al. A supersonic underwater discharge as a high-power ultrasound source[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(6): 2294-2302.
[36]李金忠, 张乔根, 李原, 等. 直流电压下油纸绝缘杂质小桥的形成过程[J]. 高电压技术, 2016, 42(12): 3901-3908.
LI J Z, ZHANG Q G, LI Y, et al. Generation process of impurity bridges in oil-paper insulation under DC voltage[J]. High Voltage Engineering, 2016, 42(12): 3901-3908. (in Chinese)
[37]王虹富, 白帆, 刘彦,等. 爆炸冲击波作用下黑索今基含铝炸药的冲击点火反应速率模型[J]. 兵工学报, 2021, 42(2): 327-339.
WANG H F, BAI F, LIU Y, et al. Ignition reaction rate model of RDX-based aluminized explosives under shock vaves[J]. Acta Armamentarii, 2021, 42(2): 327-339. (in Chinese)
[38]荣吉利, 赵自通, 冯志伟,等. 黑索今基含铝炸药水下爆炸性能的实验研究[J]. 兵工学报, 2019, 40(11): 2177-2183.
RONG J L, ZHAO Z T, FENG Z W, et al. Experimental study of underwater explosion performance of RDX-based aluminized explosive[J]. Acta Armamentarii, 2019, 40(11): 2177-2183. (in Chinese)
[39]ROSOSHEKA, EFIMOV S, TEWARI S V, et al. Phase transitions of copper, aluminum, and tungsten wires during underwater electrical explosions[J]. Physics of Plasmas, 2018, 25(10): 102709.
[40]LI X H, ZHAO F, QIN J C, et al. A new method for predicting the detonation velocity of explosives with micrometer aluminum powders[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(4):333-341.
[41]HAN R Y, ZHOU H B, WU J W, et al. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion[J]. Physics of Plasmas, 2017, 24(9): 093506.
[42]ROSOSHEK A, EFIMOV S, GUROVICH V, et al. Evolution of a shock wave generated by underwater electrical explosion of a single wire[J]. Physics of Plasmas, 2019, 26(4): 042302.br>

7

Accesses

0

Citation

Detail

Sections
Recommended

/