Research Progress of Aluminum Core-shell Materials Coated with Fluorine-containing Polymer Materials

GUO Xueyong;ZHOU Jinqiang;LI Hongliang;WU Chengcheng;FANG Hua;DENG Peng;ZHU Yanli;LIU Rui

Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (5) : 1534-1546. DOI: 10.12382/bgxb.2022.1022
Paper

Research Progress of Aluminum Core-shell Materials Coated with Fluorine-containing Polymer Materials

  • GUO Xueyong1*, ZHOU Jinqiang1, LI Hongliang2, WU Chengcheng1, FANG Hua1, DENG Peng1, ZHU Yanli1, LIU Rui1
Author information +
History +

Abstract

Aluminum (Al) is the most popular metal additive in the field of composite solid propellants due to its high calorific value, high density and low oxygen consumption. In order to improve the performance of composite solid propellant, it is necessary to take measures to modify Al. In recent years, the fluorine-containing polymer coated Al has attracted wide attention due to its excellent comprehensive properties. This paper introduces the different kinds of metal aluminum core-shell materials coated with fluorine-containing polymer materials, the different coating methods, the properties of aluminum core-shell materials and the mechanism of action of fluorine-containing polymers and aluminum. The enhanced ignition and combustion performances of aluminum core-shell materials are due to the surface reaction between the fluorine-containing polymer and the alumina layer, resulting in a violent oxidation process. At the same time, the combustion agglomeration and combustion efficiency of aluminum core-shell material modified propellant are significantly improved. The problems existing in the research of fluorine-containing polymer coated aluminum materials are discussed, and the conclusion, prospect and possible research direction are put forward.

Key words

fluorinatedpolymer / aluminumcore-shellmaterial / coating / compositesolidpropellant

Cite this article

Download Citations
GUO Xueyong, ZHOU Jinqiang, LI Hongliang, WU Chengcheng, FANG Hua, DENG Peng, ZHU Yanli, LIU Rui. Research Progress of Aluminum Core-shell Materials Coated with Fluorine-containing Polymer Materials. Acta Armamentarii. 2024, 45(5): 1534-1546 https://doi.org/10.12382/bgxb.2022.1022

References

[1]高峰, 张泽.含装药缺陷的固体火箭发动机性能评估综述[J].兵工学报, 2021, 42(8):1789-1802.
GAO F, ZHANG Z.Review on performance evaluation of solid rocket motors with charge defects[J].Acta Armamentarii, 2021, 42(8):1789-1802. (in Chinese)
[2]MAHDAVIM, FARROKHPOUR H, TAHRIRI M. Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants[J].Journal of Thermal Analysis & Calorimetry, 2018,132(2):879-893.
[3]ARISAWA H, BRILL T B.Flash pyrolysis of hydroxyl-terminated polybutadiene(HTPB) Ⅱ: implications of the kinetics to combustion of organic polymers[J].Combustion and Flame, 1996, 106(1/2):144-154.
[4]JAIN S, GUPTA G, KSHIRSAGAR D R, et al.Burning rate and other characteristics of strontium titanate(SrTiO3) supplemented AP/HTPB/Al composite propellants-ScienceDirect[J]. Defence Technology, 2019, 15(3):313-318.
[5]PANGW Q, LI Y, DELUCA L T, et al.Effect of metal nanopowders on the performance of solid rocket propellants:a review[J].Nanomaterials, 2021, 11(10):2749-2774.
[6]AO W, FAN Z M, LIU L, et al.Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys[J].Combustion and Flame, 2020, 220(10):288-297.
[7]VELLAISAMYU, BISWAS S.Effect of metal additives on neutralization and characteristics of AP/HTPB solid propellants[J].Combustion and Flame, 2020, 221(11):326-337.
[8]TUC Y, CHEN X, LI Y K, et al.Experimental study of Al agglomeration on solid propellant burning surface and condensed combustion products[J].Defence Technology, 2023, 26: 111-122.
[9]YUAN J F, LIU J Z, ZHOU Y N, et al.Aluminum agglomeration of AP/HTPB composite propellant[J].Acta Astronautica, 2019, 156(3): 14-22.
[10]WANGD Q, CAO X F, LIU J, et al.TF-Al/TiC highly reactive composite particle for application potential in solid propellants[J].Chemical Engineering Journal, 2021,425(12):130674.
[11]EMELYANOV V N, TETERINA I V, VOLKOV K N.Dynamics and combustion of single aluminium agglomerate in solid propellant environment-ScienceDirect[J].Acta Astronautica, 2020, 176(11):682-694.
[12]HANL, LI J W, WANG Y B, et al.Study on combustion oscillation characteristics of micron aluminum particles[J].Powder Technology, 2021, 394(12):782-790.
[13]ISERT S, LANE C D, GUNDUZ I E, et al.Tailoring burning rates using reactive wires in composite solid rocket propellants[J].Proceedings of the Combustion Institute, 2017, 36(2):2283-2290.
[14]JIANG Z, LI S F, LI K, et al.Laser ignition and combustion properties of composite propellant containing nanometal powders[J].AIAA Journal, 2006, 44(7): 1463-1467.
[15]ARMSTRONGR W, BASCHUNG B, BOOTH D W, et al. Enhanced propellant combustion with nanoparticles[J]. Nano Letters, 2003, 3(2):253-255.
[16]ISERT S, GROVEN L J, LUCHT R P, et al.The effect of encapsulated nanosized catalysts on the combustion of composite solid propellants[J].Combustion and Flame, 2015, 162(5):1821-1828.
[17]CHENG Z P, CHU X Z, YIN J Z, et al.Formation of composite fuels by coating aluminum powder with a cobalt nanocatalyst:enhanced heat release and catalytic performance[J].Chemical Engineering Journal, 2020, 385:123859.
[18]KIM D W, KIM K T, LEE D U, et al.Synergetic enhancement in the reactivity and stability of surface-oxide-free fine Al particles covered with a polytetrafluoroethylene nanolayer[J].Scientific Reports, 2020, 10(1):14560.
[19]YEM Q, ZHANG S T, LIU S S, et al.Preparation and characterization of pyrotechnics binder-coated nano-aluminum composite particles[J].Journal of Energetic Materials, 2016,35(3): 300-313.
[20]XIAO L Q, PANG W Q, QIN Z, et al.Cluster analysis of Al agglomeration in solid propellant combustion[J]. Combustion and Flame, 2019, 203:386-396.
[21]XIAO L Q, FAN X Z, LI J Z, et al.Effect of Al content and particle size on the combustion of HMX-CMDB propellant[J].Combustion and Flame, 2020, 214: 80-89.
[22]TEJASVI K, VENKATESHWARA RAO V, PYDISETTY Y, et al.Studies on aluminum agglomeration and combustion in catalyzed composite propellants[J].Combustion, Explosion, and Shock Waves, 2021, 57(2):203-214.
[23]WANGW M, LI H, YANG Y J, et al.Enhanced thermal decomposition, laser ignition and combustion properties of NC/Al/RDX composite fibers fabricated by electrospinning[J].Cellulose, 2021, 28(10):6089-6105.
[24]MUTLUM, KANG J H, RAZA S, et al.Thermoplasmonic ignition of metal nanoparticles[J].Nano Letters, 2018, 18(3):1699-1706.
[25]WANG F Y, WU Z G, SHANGGUAN X H, et al.Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers[J].Scientific Reports, 2017, 7:5228.
[26]XIAO L, ZHAO L J, KE X, et al.Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance-ScienceDirect[J].Chemical Engineering Science, 2020, 231:116302.
[27]BALBUDHEK, ROY A, CHAKRAVARTHY S R. Computer modelling of nano-aluminium agglomeration during the combustion of composite solid propellants[J].Proceedings of the Combustion Institute, 2015, 35(2):2471-2478.
[28]LIU J P, ZHANG H R, YAN Q L. Anti-sintering behavior and combustion process of aluminum nano particles coated with PTFE:a molecular dynamics study[J].Defence Technology, 2023, 24: 46-57.
[29]LIU Y Z, CHEN J, LIU J G, et al. Core-shell structure mediated microstructure and mechanical properties of high entropy alloy CoCrFeNi/Al composites[J].Vacuum, 2021, 192: 110454.
[30]BOCANEGRA P E, CHAUVEAU C, GKALP I. Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles[J].Aerospace Science and Technology, 2007, 11(1):33-38.
[31]王慧心, 任慧, 闫涛, 等.聚乙烯醇原位包覆铝粉结构表征及活性铝含量测定[J].兵工学报, 2019, 40(7):1373-1380.
WANG H X, REN H, YAN T, et al.Micro-structure and active aluminum content of aluminum powder in situ coated by polyvinyl Alcohol[J].Acta Armamentarii, 2019, 40(7): 1373-1380. (in Chinese)
[32]闫涛, 任慧, 马爱娥, 等.氟橡胶包覆层对纳米铝粉性能的影响研究[J].兵工学报, 2019, 40(8):1611-1617.
YAN T, REN H, MA A E, et al. Effect of fluorine rubber coating on properties of nano-aluminum powder[J].Acta Armamentarii, 2019, 40(8): 1611-1617. (in Chinese)
[33]GAO F, XU C, ZHANG H P, et al.Core-shell structured al-matrix composite with enhanced mechanical properties[J].Materials Science & Engineering A, 2016, 657:64-70.
[34]HUANGS D, PAN M, DENG S L, et al.Modified micro-emulsion synthesis of highly dispersed Al/PVDF composites with enhanced combustion properties[J].Advanced Engineering Materials, 2019, 21(5): 1801330.
[35]KHELIFA F, ERSHOV S, DRUART M E, et al.A multilayer coating with optimized properties for corrosion protection of Al[J].Journal of Materials Chemistry A, 2015, 3(31): 15977-15985.
[36]NIE H, PISHARATH S, HNG H H.Combustion of fluoropolymer coated Al and Al-Mg alloy powders[J].Combustion and Flame, 2020, 220:394-406.
[37]WANG J, ZHANG L, MAO Y F, et al.An effective way to enhance energy output and combustion characteristics of Al/PTFE[J].Combustion and Flame, 2020, 214:419-425.
[38]ZHANG M Y, BIESOLD G M, CHOI W, et al.Recent advances in polymers and polymer composites for food packaging[J].Materials Today, 2022, 53:134-161.
[39]GOMANN I, HALBACH M, SCHOLZ-BTTCHER B M. Car and truck tire wear particles in complex environmental samples-a quantitative comparison with “traditional” microplastic polymer mass loads-ScienceDirect[J]. Science of the Total Environment, 2021, 773: 145667.
[40]GLEISSNER C, LANDSIEDEL J, BECHTOLD T, et al.Surface activation of high performance polymer fibers: a review[J].Polymer Reviews, 2022, 62(4):757-788.
[41]HSISSOUR, SEGHIRI R, BENZEKRI Z, et al.Polymer composite materials:a comprehensive review[J].Composite Structures, 2021, 262: 113640.
[42]WANGJ, QIAO Z Q, YANG Y T, et al.Core-shell Al-polytetrafluoroethylene(PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials[J].Chemistry-A European Journal, 2016, 22(1) 279-284.
[43]WANG J, ZENG C C, ZHAN C H, et al.Tuning the reactivity and combustion characteristics of PTFE/Al through carbon nanotubes and grapheme[J]. Thermochimica Acta, 2019, 676: 276-281.
[44]ZHAOB B, SUN S X, LUO Y J, et al.Fabrication of polytetrafluoroethylene coated micron aluminium with enhanced oxidation[J]. Materials, 2020, 13(15): 3384.
[45]SIPPEL T R, SON S F, GROVEN L J.Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles[J].Combustion and Flame, 2014, 161(1): 311-321.
[46]XIAO F, YANG R J, LI J M.Preparation and characterization of mechanically activated aluminum/polytetrafluoroethylene composites and their reaction properties in high temperature water steam[J]. Journal of Alloys and Compounds, 2018, 761:24-30.
[47]XIAO F, LIANG T X.Preparation of hierarchical core-shell Al-PTFE@TA and Al-PTFE@TA-Fe architecture for improving the combustion and ignition properties of aluminum[J].Surface and Coatings Technology, 2021, 412: 127073.
[48]MAO Y F, HE Q Q, WANG J, et al.Tuning energy output of PTFE/Al composite materials through gradient structure[J].Defence Technology, 2022.DOI: 10.1016/j.dt.2022.05.015.
[49]WU Z Y, LIU J X, ZHANG S, et al.Enhanced thermal- and impact-initiated reactions of PTFE/Al energetic materials through ultrasonic-assisted core-shell construction[J].Defence Technology, 2021, 18(8):1362-1368.
[50]DONG W K, KIM K T, LEE D U, et al.Influence of poly(vinylidene fluoride) coating layer on exothermic reactivity and stability of fine aluminum particles[J].Applied Surface Science, 2021, 551:149431.
[51]KIM D W, KIM K T, MIN T S, et al.Improved energetic-behaviors of spontaneously surface-mediated Al particles[J].Scientific Reports, 2017, 7(1):4659.
[52]DELISIO J B, HU X L, WU T, et al. Probing the reaction mechanism of aluminum/fluoropolymer composites[J]. Journal of Physical Chemistry B, 2016, 120(24):5534-5542.
[53]MAO Y F, HE Q Q, WANG J, et al.Rational design of gradient structured fluorocarbon/Al composites towards tunable combustion performance[J].Combustion and Flame, 2021, 230: 111436.
[54]YANGH T, HUANG C, CHEN H H.Tuning reactivity of nanoaluminum with fluoropolymer via electrospray deposition[J].Journal of Thermal Analysis & Calorimetry, 2017, 127(3): 2293-2299.
[55]WANG H Y, KLINE D J, REHWOLDT M, et al.Architecture can significantly alter the energy release rate from nanocomposite Energetics[J].ACS Applied Polymer Materials, 2019, 1(5):982-989.
[56]CHEN S H, YU H S, ZHANG W, et al.Sponge-like Al/PVDF films with laser sensitivity and high combustion performance prepared by rapid phase inversion[J].Chemical Engineering Journal, 2020, 396:124962.
[57]VITALEA, QUAGLIO M, MARASSO S L, et al.Direct photolithography of perfluoropolyethers for solvent-resistant microfluidics[J].Langmuir, 2013, 29(50):15711-15718.
[58]MILLER H A, KUSEL B S, DANIELSON S T, et al. Metastable nanostructured metallized fluoropolymer composites for energetics[J].Journal of Materials Chemistry, 2013, 1(24):7050-7058.
[59]KETTWICH S C, KAPPAGANTULA K, KUSEL B S, et al.Thermal investigations of nanoaluminum/perfluoropolyether core-shell impregnated composites for structural energetics[J].Thermochimica Acta, 2014, 591:45-50.
[60]WUC C, NIE J X, LI S W, et al.Tuning the reactivity of perfluoropolyether-functionalized aluminum nanoparticles by the reaction interface fuel-oxidizer ratio[J].Nanomaterials, 2022, 12(3): 530-542.
[61]MCCOLLUMJ, PANTOYA M L, IACONO S T. Catalyzing aluminum particle reactivity with a fluorine oligomer surface coating for energy generating applications[J].Journal of Fluorine Chemistry, 2015, 180: 265-271.
[62]KAPPAGANTULA K S, FARLEY C, PANTOYA M L, et al.Tuning energetic material reactivity using surface functionalization of aluminum fuels[J].Journal of Physical Chemistry C, 2012, 116(46):24469-24475.
[63]CAMPBELLL L, HILL K J, SMITH D K, et al.Thermal analysis of microscale aluminum particles coated with perfluorotetradecanoic(PFTD) acid[J].Journal of Thermal Analysis and Calorimetry, 2020, 145(10):289-296.
[64]LIUT K.Experimental and model study of agglomeration of burning aluminized Propellants[J].Journal of Propulsion and Power, 2015, 21(5): 797-806.
[65]TANG W Q, YANG R J, LI J M, et al.Core-shell particle of aluminum-copper perfluorooctanoate configurations and its ignition and combustion properties[J].Combustion and Flame, 2022, 245:112270.
[66]TANG W, YANG R J, ZENG T, et al.Positive effects of organic fluoride on reduction of slag accumulation in static testing of solid rocket motors of different diameters[J].Acta Astronautica, 2022, 194:277-285.
[67]KE X, GUO S F F, GUO B W, et al.Superhydrophobic fluorine-containing protective coating to endow Al nanoparticles with long-term storage stability and self-activation reaction capability[J].Advanced Materials Interfaces, 2019, 6(19): 1901025-1901036.
[68]ZHANGL C, WANG S, SU X, et al.Preparation and characterization of core-shell Al@PFHP with improving the combustion and ignition properties of aluminum powder[J]. Particuology, 2022, 77:62-70.
[69]COHENO, MICHAELS D, YAVOR Y.Agglomeration in composite propellants containing different nano-aluminum powders[J].Propellants, Explosives, Pyrotechnics, 2022, 47(9): e202100320.
[70]JIAO Y K, LI S G, LI G P, et al.Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite[J].RSC Advances, 2022, 12(9):5612-5618.
[71]WANG H X, REN H, YAN T Y, et al.A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles[J].Scientific Reports, 2021, 11(1): 738-751.
[72]ZHENG D W, HUANG T W, XU B, et al.3D Printing of n-Al/polytetrafluoroethylene-based energy composites with excellent combustion stability[J].Advanced Engineering Materials, 2021, 23(5): 2001252-2001259.
[73]PANGW Q, LI Y, DELUCA L T, et al.Effect of metal nanopowders on the performance of solid rocket propellants:a review[J].Nanomaterials, 2021, 11(10):2749-2760.
[74]AO W, LIU P J, LIU H, et al.Tuning the agglomeration and combustion characteristics of aluminized propellants via a new functionalized fluoropolymer[J].Chemical Engineering Journal, 2020, 382:122987-122997.
[75]UHLENHAKE K E, YEHIA O R, NOEL A, et al.On the use of fluorine-containing nano-aluminum composite particles to tailor composite solid rocket propellants[J].Propellants, Explosives, Pyrotechnics, 2022, 47(7):e202100370.
[76]WANG H Y, REHWOLDT M, KLINE D J, et al.Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites[J].Combustion and Flame, 2019, 201:181-186.br>br>br>

10

Accesses

0

Citation

Detail

Sections
Recommended

/