Study of Equivalent and Influence Laws of Accelerated Thermal Fatigue Life of Aluminum Alloy Pistons in Highly StrengthenedDiesel Engines

JI Yameng;ZHANG Weizheng;YUAN Yanpeng;LU Hongyu;GUO Jinbao;XU Yunqing

Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (12) : 3008-3019. DOI: 10.12382/bgxb.2021.0651
Paper

Study of Equivalent and Influence Laws of Accelerated Thermal Fatigue Life of Aluminum Alloy Pistons in Highly StrengthenedDiesel Engines

  • JI Yameng1, ZHANG Weizheng1, YUAN Yanpeng1, LU Hongyu1, GUO Jinbao2, XU Yunqing2
Author information +
History +

Abstract

To solve the problem of predicting the thermal fatigue life of pistons in highly strengthened diesel engines under real conditions, an accelerated thermal fatigue method is proposed to predict the service life of pistons. The critical life method is used to calculate the cycle life of pistons under real working conditions and bench conditions. Piston accelerated thermal fatigue tests are carried out to verify the simulated life data, and the simulation data is in good agreement with the test results. Through damage equivalent analysis, the relationship between piston life under real working conditions and bench life is determined. The correlation between cycle life, loading time and maximum temperature under bench conditions is obtained by nonlinear fitting. Under real working conditions and bench test conditions, the simulation results indicate that the first spot where fatigue failure occurs is the throat area. The failure areas of the two are consistent. When the maximum temperature of piston throat is 408.6 ℃, the service life of piston under real machine calibration condition is 21.2 times that under bench condition. Under the condition of piston bench, when the maximum temperature is the same, the piston life decreases with the decrease of heating time. When the heating time is the same, the piston life decreases with the increase of the maximum temperature. According to the fitted correlation, the activation energy of piston failure is 61.5 kJ/mol.

Key words

realmachinecondition / benchcondition / lifeequivalence / acceleratedthermalfatiguetest

Cite this article

Download Citations
JI Yameng, ZHANG Weizheng, YUAN Yanpeng, LU Hongyu, GUO Jinbao, XU Yunqing. Study of Equivalent and Influence Laws of Accelerated Thermal Fatigue Life of Aluminum Alloy Pistons in Highly StrengthenedDiesel Engines. Acta Armamentarii. 2022, 43(12): 3008-3019 https://doi.org/10.12382/bgxb.2021.0651

References


[1]AMMARH, SAMUEL A, SAMUEL F. Effects of surface porosity on the fatigue strength of AE425 and PM390 hypereutectic Al-Si casting alloys at medium and elevated temperatures [J]. Materials Science and Engineering: A, 2008, 473(1/2):58-64.
[2]FLOWEDAYG, PETROV S, TAIT R B. Thermo-mechanical fatigue damage and failure of modern high performance diesel pistons[J]. Engineering Failure Analysis, 2011, 18(7):1664-1674.
[3]LIUX F, WANG Y, LIU W H. Finite element analysis of thermo-mechanical conditions inside the piston of a diesel engine[J]. Applied Thermal Engineering, 2017, 119:312-318.
[4]SILVAF S. Fatigue on engine pistons—a compendium of case studies[J]. Engineering Failure Analysis, 2006, 13(3): 480-492.
[5]许广举, 李铭, 赵洋. 基于热机耦合的柴油机活塞热应力及疲劳寿命分析[J]. 内燃机工程, 2017, 38(2):96-106.
XU G J, LI M, ZHAO Y. Thermo-mechanical analysis of piston thermal stress and fatigue life for diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2017, 38(2):96-106. (in Chinese)
[6]何联格, 周蓝, 苏建强. 内燃机活塞结构可靠性数值仿真计算研究现状与展望[J].重庆理工大学学报(自然科学), 2020, 34(11):34-42.
HE L G, ZHOU L, SU J Q. Present situation and prospect of numerical simulation calculation method for piston's structure reliability of ICE[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(11):34-42. (in Chinese)
[7]郭金宝.高功率柴油机活塞可靠性分析及试验研究[D].济南:山东大学, 2007.
GUO J B. Durability and test research of high power diesel engine piston[D].Jinan:Shandong University, 2007. (in Chinese)
[8]张卫正, 刘金祥, 魏春源.基于发动机受热件热疲劳试验损伤的寿命预测研究[J].内燃机学报, 2002, 20(1):92-94.
ZHANG W Z, LIU J X, WEI C Y. A study on the life forecast for engine's heated partsbased on thermal fatigue test damage[J]. Transactions of CSICE, 2002, 20(1):92-94. (in Chinese)
[9]王浩宇, 徐建安, 曲东越. 某船用柴油机活塞件疲劳寿命预测及损伤演化分析[J]. 内燃机工程, 2020, 41(6):86-94.
WANG H Y, XU J A, QU D Y. Fatigue life prediction and damage evolution analysis of marine diesel engine pistons[J]. Chinese Internal Combustion Engine Engineering,2020, 41(6):86-94. (in Chinese)
[10]SONGH W, YU G, JIAN S. Thermal fatigue on pistons in-duced by shaped high power laser. Part I: experimental study of transient temperature field and temperature oscillation[J]. Inter-national Journal of Heat and Mass Transfer, 2008, 51(3/4): 757-767.
[11]SZMYTKAF, SALEM M,RZA-ARIAB F, et al. Thermal fatigue analysis of automotive diesel piston: experimental procedure and numerical protocol[J]. International Journal of Fatigue, 2015, 73: 48-57.
[12]李云强, 赵立普, 李伟东. 考虑进气冷却效应的活塞低周疲劳寿命预测[J]. 西安交通大学学报, 2019, 53(7): 45-51.
LI Y Q, ZHAO L P, LI W D. Low-cycle life prediction of piston in consideration of inlet cooling effect[J]. Journal of Xi'an Jiaotong University, 2019, 53(7): 45-51. (in Chinese)
[13]张卫正, 魏春源, 苏志国, 等.内燃机铝合金活塞疲劳寿命预测研究[J].中国机械工程, 2003, 14(10): 865-867.
ZHANG W Z, WEI C Y, SU Z G, et al. Study on fatigue life prediction of aluminum alloy piston in internal combustion engine[J]. China Mechanical Engineering, 2003, 14(10): 865-867. (in Chinese)
[14]LUY H, ZHANG X, PENG L. Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston[J]. Applied Thermal Engineering, 2017, 113:796-812.
[15]邓晰文, 雷基林, 文均. 活塞结构参数对柴油机活塞传热与温度场的影响分析[J]. 农业工程学报, 2017, 33(10): 102- 108.
DENG X W, LEI J L, WEN J. Influences of piston structural parameters on heat transfer and temperature field of diesel engine piston[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10):102-108. (in Chinese)
[16]LUX Q, LI Q, ZHANG W P, et al. Thermal analysis on piston of marine diesel engine[J]. Applied Thermal Engineering, 2013, 50(1):168-176.
[17]SEALEW J, TAYLOR D H C. Spatial variation of heat transfer to pistons and liners of some medium speed diesel engines[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1):203-218.
[18]SMITHK N, WATSON P, TOPPER T H. A stress-train func-tion for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-776.
[19]郭冰彬. 铸造铝合金压蠕变与低周疲劳耦合特性研究与应用[D]. 北京:北京理工大学, 2016.
GUO B B. Study on the coupling characteristics of compression creep and low cycle fatigue of cast aluminum and it's application[D]. Beijing:Beijing Institute of Technology, 2016. (in Chinese)
[20]LEEB L, KIM K S, NAM K M. Fatigue analysis under variable amplitude loading using an energy parameter[J]. International Journal of Fatigue, 2003, 25:621-631.
[21]薛明德, 丁宏伟, 王利华. 柴油机活塞的温度场、热变形与应力三维有限元分析[J].兵工学报, 2001, 22(1):11-14.
XUE M D, DING H W, WANG L H. 3-D finite element analysis of the temperature field, thermal deformation and stress of pistons in diesel engines[J]. Acta Armamentarii, 2001, 22(1):11-14. (in Chinese)
[22]陈正科, 朱叶, 罗宇. 基于磁-热耦合的铝合金活塞温度场有限元分析[J].热加工工艺, 2021, 50(10):58-61.
CHEN Z K, ZHU Y, LUO Y. Finite element analysis of temperature field of aluminum alloy piston based on magnetic-thermal coupling[J]. Hot Working Technology, 2021, 50(10):58-61. (in Chinese)
[23]WANGR Z, ZHANG X C, SHAN T. A modified strain energy density exhaustion model for creep-fatigue life prediction[J]. International Journal of Fatigue, 2016, 90:12-22.
[24]DAIS H, BIAN Z Y, WANG M L, et al. The high-temerature creep behavior of in-situ TiB2 particulate reinforced Al12Si4Cu2NiMg composite[J]. Metals, 2018, 8(11): 917.


21

Accesses

0

Citation

Detail

Sections
Recommended

/