Evaluation of Bending Fatigue Life of Spiral Bevel Gears by Simulation and Accelerated Test

WEI Bingyang;GUO Yuliang;GU Dewan;WANG Yongqiang

Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (11) : 2945-2952. DOI: 10.12382/bgxb.2021.0601
Paper

Evaluation of Bending Fatigue Life of Spiral Bevel Gears by Simulation and Accelerated Test

  • WEI Bingyang, GUO Yuliang, GU Dewan, WANG Yongqiang
Author information +
History +

Abstract

Fatigue life testing is an indispensable method for evaluating the gear strength of spiral bevel gears, but the lack of fatigue test data has long led to high uncertainties in the design of related products. This study establishes a three-dimensional finite element model for a spiral bevel gear and presents a simulation calculation of the corresponding bending fatigue life. The mechanism and methods of the accelerated fatigue test are discussed, and the stress factors for the accelerated test are presented. The tensile fatigue strength test is carried out on the 20CrNiMo material test bar, and the S-N curve of the material is obtained. Based on this, a three-dimensional finite element software is used to complete multiple calculations of simulated digital bending fatigue life in a special closed power flow bevel gear. The durability test bench has been used to conduct several sets of tests on gear bending strength and fatigue life. Test results and theoretical simulation results are in good agreement, with a comparison error of less than 3.2%. Through fatigue life simulation and accelerated testing, the feasibility of the evaluation method is proved. The approach works well in evaluating the bending fatigue strength of bevel gears with complex structures.

Key words

spiralbevelgear / finiteelement / S-Ncurve / fatiguestrength / acceleratedfactor

Cite this article

Download Citations
WEI Bingyang, GUO Yuliang, GU Dewan, WANG Yongqiang. Evaluation of Bending Fatigue Life of Spiral Bevel Gears by Simulation and Accelerated Test. Acta Armamentarii. 2022, 43(11): 2945-2952 https://doi.org/10.12382/bgxb.2021.0601

References


[1]张景柱, 崔清斌, 徐诚. 基于协同仿真的传动箱齿轮疲劳寿命预测方法[J]. 兵工学报, 2007,28(12):1424-1427.
ZHANG J Z, CUI Q B, XU C. Fatigue life prediction of transmission gear based on cooperation simulation technology[J]. Acta Armamentarii, 2007,28(12):1424-1427. (in Chinese)
[2]朱财龙. 汽车驱动桥主减速器齿轮疲劳寿命研究[D]. 合肥: 合肥工业大学, 2010:1-50.
ZHU C L. Research on the fatigue life of automotive drive axel final drive gear[D]. Hefei: Hefei University of Technology, 2010:1-50. (in Chinese)
[3]刘娜. 重型汽车变速器齿轮的计算仿真分析[D]. 镇江: 江苏大学,2013:1-61.
LIU N. Calculation and simulation analysis of the heavy-duty vehicle transmission gear[D]. Zhenjiang: Jiangsu University, 2013:1-61. (in Chinese)
[4]CHENS X,YANG Y X,WANG T, et al. Analysis of fatigue characteristics of gears based on nCode design Life [C]∥ Proceedings of the 6th International Conference on Mechanical Engineering, Materials Science and Civil Engineering. Bristol, England: IOP, 2019, 542(1): 012076.
[5]KIMW S, KIM Y J, BAEK S M, et al. Fatigue life simulation of tractor spiral bevel gear according to major agricultural operations[J]. Applied Sciences, 2020, 10(24): 1-19.
[6]LEEK, SONG M, SEO J. Finite element modeling and fatigue analysis of hypoid gears installed in a power transfer unit with a correlational study based on an experimental investigation[J]. Journal of Mechanical Science and Technology,2019, 33(6): 2797-2807.
[7]DENGH L, GUO, Y, LIU, H, et al. Bending fatigue life prediction model of carburized gear based on microcosmic fatigue failure mechanism[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 882-894.
[8]徐然. 商用车变速器加速疲劳寿命试验技术研究[D]. 重庆: 重庆理工大学, 2017:1-51.
XU R. A research on accelerated fatigue test method for commercial vehicle transmissions[D]. Chongqing: Chongqing University of Technology, 2017: 1-51. (in Chinese)
[9]曾雨田, 李金库. 风电齿轮箱加速疲劳寿命试验验证[J]. 机械工程师, 2018(9): 152-154.
ZENG Y T,LI J K. Test verification of accelerated fatigue life about wind power gearbox[J]. Mechanical Engineer,2018(9): 152-154. (in Chinese)
[10]王铁, 赵富强, 张瑞亮, 等. 变速器加速疲劳试验方法分析[J]. 汽车工程, 2013, 35(12): 1078-1083.
WANG T,ZHAO F Q,ZHANG R L,et al. An analysis on accelerated fatigue test method for transmissions[J]. Automotive Engineering,2013, 35(12): 1078-1083. (in Chinese)
[11]LUY H, ZHENG H Y, ZENG J, et al. Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test[J]. Reliability Engineering and System Safety, 2019, 188: 221-232.
[12]何晓华. 20CrMoH齿轮弯曲疲劳强度研究[D]. 重庆: 重庆大学, 2011:1-68.
HE X H. The study of bending fatigue strength of 20CrMoH gear [D]. Chongqing: Chongqing University, 2011:1-68. (in Chinese)

[13]李铭, 谢里阳, 张宇, 等. 齿轮的概率寿命预测与弯曲疲劳试验[J]. 机械工程学报,2017,53(18):169-175.
LI M, XIE L Y, ZHANG Y, et al. Probabilistic life prediction and bending fatigue test for gear [J]. Journal of Mechanical Engineering,2017,53(18): 169-175. (in Chinese)
[14]PENGC, XIAO Y Z, WANG Y Z, et al. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear[J]. Optics and Laser Technology, 2017, 94: 15-24.
[15]赵文杰,杨绍普,任学红,等.高铁齿轮钢18CrNiMo7-6循环变形行为实验和本构模型[J].湖南大学学报(自然科学版), 2020, 47(6): 52-58.
ZHAO W J, YANG S P, REN X H, et al. Cyclic deformation experiment and constitutive model of high-speed railway gear steel 18CrNiMo7-6[J]. Journal of Hunan University (Natural Sciences), 2020, 47(6):52-58. (in Chinese)
[16]唐鑫,朱如鹏,廖梅军,等.第三代航空齿轮钢圆柱齿轮弯曲疲劳强度性能测试分析[J].航空动力学报,2021,36(8):1756-1764.
TANG X, ZHU R P, LAO M J, et al.Analyse bending fatigue strength test of cylindrical gear of third-generation aviation gear steel[J]. Journal of Aerospace Power, 2021,36(8):1756-1764. (in Chinese)
[17]李纪强, 李金峰, 王志刚, 等. GB/T 14230—2021 齿轮弯曲疲劳强度试验方法[S]. 北京: 中国标准出版社, 2021.
LI J Q, LI J F, WANG Z G, et al. GB/T 14230—2021 Standard of test method for bending load capacity of gears [S]. Beijing: Standards Press of China, 2021. (in Chinese)
[18]魏冰阳, 邓效忠, 仝昂鑫, 等. 曲面综合法弧齿锥齿轮加工参数计算[J]. 机械工程学报, 2016,52(1) :20-25.
WEI B Y, DENG X Z, TONG A X, et al. Surface synthesis method on generating parameters computation of spiral bevel gears[J]. Journal of Mechanical Engineering, 2016,52(1):20-25. (in Chinese)
[19]魏冰阳, 杨建军, 仝昂鑫, 等. 基于等距Ease-off曲面的轮齿啮合仿真分析[J]. 航空动力学报,2017,32(5):1259-1265.
WEI B Y, YANG J J, TONG A X, et al. Tooth meshing simulation and analysis based on isometric mapping ease-off surface[J]. Journal of Aerospace Power, 2017,32(5):1259-1265. (in Chinese)
[20]包小庆, 刘志强, 吴永忠,等. 双参数威布尔分布函数的确定及曲线拟合[J]. 能源与环境,2007(4):8-9.
BAO X Q, LIU Z Q,WU Y Z, et al. Determination and curve fitting of two-parameter Weibull distribution function[J]. Energy and Environment, 2007(4):8-9. (in Chinese)
[21]郭玉梁. 弧齿锥齿轮弯曲疲劳寿命仿真与加速试验研究[D].洛阳:河南科技大学, 2021.
GUO Y L. Study on bending fatigue life of simulation and accelerated test of spiral bevel gear[D]. Luoyang:Henan University of Science and Technology, 2021. (in Chinese)
[22]ISO10300-1—2014. Calculation of load capacity of bevel gears. Part 1:Introduction and general influence factors[S]. Geneva: ISO, 2014: 1-58.
[23]ISO10300-3—2014. Calculation of load capacity of bevel gears. Part 3: Calculation of tooth root strength[S]. Geneva: ISO, 2014: 1-41.
[24]HONGI, TEAFORD Z, KAHRAMAN A. A comparison of gear tooth bending fatigue lives from single tooth bending and rotating gear tests[J]. Forschung im Ingenieurwesen,2022,86:259-271.
[25]魏冰阳,李智海,徐文涵等.一种机械封闭功率锥齿轮耐久性试验台.河南省:CN109029983B[P].2019-12-24.
WEI B Y, LI Z H, XU W H, et al. Durability test bench for mechanically enclosed power bevel gears. Henan: CN109029983B[P]. 2019-12-24. (in Chinese)



Accesses

Citation

Detail

Sections
Recommended

/