Design of Attitude Control System for Flexible Inflatable Spacecraft

ZHAO Chunming;JIAO Shenghai;WANG Xiaofei;YAO Yuemin;HUANG Chaodong

Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (6) : 1346-1354. DOI: 10.12382/bgxb.2021.0593
Paper

Design of Attitude Control System for Flexible Inflatable Spacecraft

  • ZHAO Chunming, JIAO Shenghai, WANG Xiaofei, YAO Yuemin, HUANG Chaodong
Author information +
History +

Abstract

An attitude control method based on the theory of active disturbance rejection control is proposed to accurately control the attitude of flexible inflatable spacecraft. A rigid-flexible coupling dynamic model is established, and a coupling attitude control system is designed using the linear active disturbance rejection controller,attitude maneuver path planning algorithm,pulse-width pulse-frequency (PWPF) modulator and low-pass filter. The control system can be used to control the attitude and suppress the elastic vibration simultaneously. The numerical simulations are conducted to verify the effectiveness of the proposed system. In contrast to the traditional PID control,the simulated results show that the attitude control system for flexible inflatable spacecraft designed by the proposed attitude control method can adapt to large-angle attitude maneuver and effectively suppress the flexible vibration of inflatable capsule,improve the attitude accuracy of flexible spacecraft and avoid frequent on-off of the engine to save fuel.

Key words

inflatablespacecraft / attitudecontrol / activedisturbancerejectioncontrol / rigid-flexiblecoupling

Cite this article

Download Citations
ZHAO Chunming, JIAO Shenghai, WANG Xiaofei, YAO Yuemin, HUANG Chaodong. Design of Attitude Control System for Flexible Inflatable Spacecraft. Acta Armamentarii. 2022, 43(6): 1346-1354 https://doi.org/10.12382/bgxb.2021.0593

References


[1]何栿,孙勇成.基于逆合成孔径雷达图像的弹头识别方法[J].指挥信息系统与技术,2021,12(1):71-75,85.
HE F,SUN Y C. Warhead recognition method based on inverse synthetic aperture radar images[J].Command Information System and Technology,2021,12(1): 71-75,85.(in Chinese)
[2]陈萍萍,孙胜利,黄烽.空间可充气气球应用研究[J].航天电子对抗,2006,22(1):36-38.
CHEN P P,SUN S L,HUANG F. Research on the application of inflatable balloons in space[J].Aerospace Electronic Warfare,2006,22(1):36-38. (in Chinese)
[3]付新卫,孟少华,周印佳,等.柔性可展开太空舱研究进展[J].航天返回与遥感,2020,41(3):37-46.
FU X W,MENG S H,ZHOU Y J,et al. Investigation development on space inflatable capsule [J]. Spacecraft Recovery & Remote Sensing,1992,41(3):37-46. (in Chinese)
[4]王立武,鲁媛媛,房冠辉,等.航天器增阻离轨技术发展概述及前景展望[J].航天器工程,2020,29(1):61-69.
WANG L W,LU Y Y,FANG G H,et al.Overview and prospect of drag-increasing deorbit technology for spacecraft[J].Spacecraft Engineering,2020,29(1): 61-69. (in Chinese)
[5]李沫宁,孟军辉,刘莉.柔性充气结构在无人系统中的应用[J].无人系统技术,2019,22(1):48-57.
LI M N,MENG J H,LIU L.Application of flexible inflatable structure in the unmanned system[J].Unmanned Systems Technology,2019,22(1):48-57. (in Chinese)
[6]曹旭,王伟志,张宏伟,等.一种新型充气式重力梯度杆的研制和在轨展开试验[J].航天返回与遥感,2014,35(3):20-27.
CAO X,WANG W Z,ZHANG H W,et al. Development and space experiment of a new inflatable gravity gradient boom[J].Spacecraft Recovery & Remote Sensing,2014,35(3):20-27. (in Chinese)
[7]GUIDANEANK,VEAL G. An inflatable rigidizable calibration optical sphere[C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference.Norfolk,VA,US: AIAA,2003.
[8]信志涛.空间气囊在燃气作用下充气展开过程数值模拟[D].南京:南京理工大学,2018.
XIN Z T.Numerical simulation of inflatable process of space airbag under the action of gas[D].Nanjing:Nanjing University of Science and Technology,2018.(in Chinese)
[9]韩堃烽.折叠薄膜充气展开过程动力学研究[D].长沙:湖南大学,2019.
HAN K F. Research on the expansion dynamics of folded membrane structure[D].Changsha: Hunan University,2019. (in Chinese)
[10]凌旻翰.极薄薄膜增阻球形状稳定性分析[D].哈尔滨:哈尔滨工业大学,2020.
LING M H.Shape stability analysis of ultra-thin film drag balloon[D].Harbin: Harbin Institute of Technology,2020. (in Chinese)
[11]魏德超.复杂力学环境下航天器结构设计与力学特性分析[D].北京:中国科学院国家空间科学中心,2017.
WEI D C. Structural design and mechanical analysis of spacecraft in complex mechanics environment[D].Beijing:National Space Science Center , Chinese Academy of Sciences,2017. (in Chinese)
[12]徐彦,王伟东,王珲玮,等.柔性充气囊体结构的动力学响应和姿态分析[J].上海航天,2017,34(2):169-176.
XU Y,WANG W D,WANG H W,et al.Dynamic response and attitude analysis for flexible inflatable capsule structures [J].Aerospace Shanghai,2017,34(2):169-176. (in Chinese)
[13]CHENZ,DU J,LIU X D,et al.Adaptive robust control for flexible spacecraft with LQR vibration suppression[C]∥Proceedings of the 39th Chinese Control Conference. Shenyang, China:Chinese Association of Automation, 2020:6978-6983.
[14]ZHUW W,ZONG Q,ZHANG X Y,et al. Disturbance observer-based multivariable flnite-time attitude tracking for flexible spacecraft[C]∥Proceedings of the 39th Chinese Control Conference. Shenyang,China: Chinese Association of Automation,2020:1772-1777.
[15]YUZ,GUO Y,ZHONG C X,et al.Attitude manoeuvre control and asymptotic disturbance rejection of flexible spacecraft[J]. Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering,2019,233(2):426-437.
[16]TONC,PETERSEN C.Continuous fixed-time sliding mode control for spacecraft with flexible appendages[J].IFAC-PapersOnLine,2018,51 (12):1-5.
[17]WANGJ,LI D X. Experiments study on attitude coupling control method for flexible spacecraft[J].Acta Astronautica,2018,147:393-402.
[18]张博伦,周荻.引入角加速度测量的柔性飞行器姿态控制方法[J].兵工学报,2020,41(11):2225-2233.
ZHANG B L,ZHOU D. Flexible aircraft attitude control method with the measurement of angular acceleration[J]. Acta Armamentarii,2020,41(11): 2225-2233. (in Chinese)
[19]SUNM W,WANG Z H,CHEN Z Q.Practical solution to attitude control within wide envelope[J].Aircraft Engineering and Aerospace Technology,2014,86 (2): 117-128.
[20]GAOZ Q.Scaling and bandwidth-parameterization based controller tuning[C]∥Proceedings of the American Control Conference. Denver,CO,US:IEEE,2003:4989-4996.
[21]陈增强,程赟,孙明玮,等.线性自抗扰控制理论及工程应用的若干进展[J].信息与控制,2017,46(3):257-266.
CHEN Z Q,CHENG Y,SUN M W,et al. Surveys on theory and engineering applications for linear active disturbance rejection control[J].Information and Control,2017,46(3): 257-266. (in Chinese)
[22]CHANGC H,HAN K W. Gain margins and phase margins for control system with adjustable parameters[J].Journal of Guidance,Control,and Dynamics,1990,13(3):404-408.
[23]MCCLELLANDR S. Spacecraft attitude control system performance using pulse-width pulse-frequency modulated thrusters[D].Monterey,CA,US:Naval Postgraduate School,1994.


151

Accesses

0

Citation

Detail

Sections
Recommended

/