Parameterized Time-frequency Analysis in Continuous-wave Active Detection

XUE Cheng;GU Yiming;GONG Zaixiao;LI Zhenglin

Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (7) : 1655-1666. DOI: 10.12382/bgxb.2021.0420
Paper

Parameterized Time-frequency Analysis in Continuous-wave Active Detection

  • XUE Cheng1,2, GU Yiming1, GONG Zaixiao1, LI Zhenglin1,3
Author information +
History +

Abstract

Acontinuous wave signal processing algorithm is proposed based on parameterized time-frequency analysis to address the problems of target echo detection and direct wave interference suppression of hyperbolic frequency modulation signal in continuous-wave active detection. First, based on the analysis of the time-frequency characteristics of the hyperbolic frequency modulated continuous wave signal andthe idea of parameterized time-frequency analysis, we propose afrequency-domain parameterized time-frequency transform suitable for active detection and the kernel function design for hyperbolic frequency modulated signal. Then, to suppress the direct wave interference in the received signal, the parameterized rotating time-frequency transform is used, along with the time-frequency domain filtering in order to separate the signal components, and then the echo signal is reconstructed via the inverse transform. Numerical simulation and marine experimental results show that the proposed algorithm not only can accurately estimate the time-frequency characteristics of the signal, effectively obtain the time-frequency gain of the hyperbolic frequency modulated continuous wave signal, and improve the detection performance, but also can effectively suppress direct wave interference.

Key words

hyperbolicfrequencymodulationsignal / continuous-wavesonar / parameterizedtime-frequencytransformation / time-frequencyfilter

Cite this article

Download Citations
XUE Cheng, GU Yiming, GONG Zaixiao, LI Zhenglin. Parameterized Time-frequency Analysis in Continuous-wave Active Detection. Acta Armamentarii. 2022, 43(7): 1655-1666 https://doi.org/10.12382/bgxb.2021.0420

References


[1]SAUNDERSW K. Post-war developments in continuous-wave and frequency-modulated radar[J]. Ire Transactions on Aerospace & Navigational Electronics, 1961, ANE-8(1): 7-19.
[2]VOSSENR, SPEK E, BEERENS S. Low frequency continuous active sonar[C]∥Proceedings of the European Conference on Undersea Defence Technology. London, UK: Nexus Media, Ltd., 2011:1-4.
[3]HICKMAN G, KROLIK J L. Non-recurrent wideband continuous active sonar[C]∥Proceedings of 2012 Oceans. VA, USA: IEEE, 2012: 1-6.
[4]吴迪, 周泽民, 曾新吾. M-COSTAS 复合编码连续主动声呐信号研究[J]. 信号处理, 2016, 32(10): 1187-1193.
WU D, ZHOU Z M, ZENG X W. Study on M-COSTAS novel coded multi-modulation continuous active sonar signal[J]. Journal of Signal Processing, 2016, 32(10): 1187-1193. (in Chinese)
[5]GRIMMETTD, WAKAYAMA C. Multistatic tracking for continous active sonar using Doppler-bearing measurements[C]∥Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013: 258-265.
[6]HAGUE D A, BUCK J R. The generalized sinusoidal frequency modulated waveform for active sonar[J]. IEEE Journal of Oceans Engineering, 2016, 42(1):109-123.
[7]庞博, 吴一飞, 刘本奇. 连续波声呐中的调频信号设计方法及性能分析[J]. 声学技术, 2017,36(4): 327-334.
PANG B, WU Y F, LIU B Q. The design and performance of the frequency modulated signal for continuous active sonar[J]. Technical Acoustics, 2017, 36(4): 327-334. (in Chinese)
[8]MURPHY S M, HINES P C. Sub-band processing of continuous active sonar signals in shallow water[C]∥Proceedings of Oceans 2015. Genova, Italy: IEEE, 2015: 1-4.
[9]刘大利, 刘云涛, 蔡惠智. 水下连续波有源探测的回波检测算法[J]. 声学学报, 2014, 39(2): 163-169.
LIU D L, LIU Y T, CAI H Z. An echo detection algorithm for underwater continuous wave active detection[J]. Acta Acustica, 2014, 39(2):163-169. (in Chinese)
[10]周泽民, 曾新吾, 关承宇,等. 连续波主动声呐的直达波抑制处理方法研究[J]. 应用声学, 2019, 38(4):674-680.
ZHOU Z M, ZENG X W, GUAN C Y, et al. Research on strong direct blast suppression for continuous active sonar[J]. Applied Acoustics, 2019, 38(4):674-680. (in Chinese)
[11]KWOKH K, JONES D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48(10): 2964-2972.
[12]BELTRANJ R, LEON J P D. Estimation of the instantaneous amplitude and the instantaneous frequency of audio signals using complex wavelets[J]. Signal Processing, 2010, 90(12): 3093-3109.
[13]BARKAT B, BOASHASH B. Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: Statistical performance in the presence of additive Gaussian noise[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2480-2490.
[14]YANG Y, PENG Z K, DONG X J, et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2751-2764.
[15]杨扬. 参数化时频分析理论, 方法及其在工程信号分析中的应用[D]. 上海: 上海交通大学, 2013.
YANG Y. Theory and method of parametric time frequency analysis and its application in engineering signal analysis[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
[16]ZHOUP, PENG Z, CHEN S, et al. Non-stationary signal analysis based on general parameterized time-frequency transform and its application in the feature extraction of a rotary machine[J]. Frontiers of Mechanical Engineering, 2018, 13(2): 292-300.
[17]王璐, 许录平, 张华, 等. 基于S变换的脉冲星辐射脉冲信号检测 [J]. 物理学报, 2013, 62(13): 596-605.
WANG L, XU L P, ZHANG H, et al. Detection of pulsar radiation pulse signal based on S-transform[J]. Acta Physica Sinica, 2013, 62(13): 596-605. (in Chinese)
[18]顾怡鸣,李整林,宫在晓,等.浅海负跃层条件下的双基地有源探测实验及定位声速修正[J]. 声学学报, 2019, 44(4): 429-441.
GU Y M, LI Z L, GONG Z X, et al. Experimental verification of bistatic active detection and propagation speed correction in shallow water with negative thermocline[J]. Acta Acustica, 2019, 44(4): 429-441. (in Chinese)
[19]OLHEDES, WALDEN A T. A generalized demodulation approach to time-frequency projections for multicomponent signals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 2159-2179.
[20]MUNAFA, CANEPA G, LEPAGE K D. Continuous active sonars for littoral undersea surveillance[J]. IEEE Journal of Oceanic Engineering, 2018, 44(4): 1198-1212.
[21]刘大利. 连续波主动声呐探测性能分析[C]∥2018年全国声学大会论文集 C水声工程和水声信号处理. 北京: 中国声学学会, 2018: 2.
LIU D L. Detection performance analysis of continuous active sonar[C]∥Proceedings of the 2018 National Acoustic Conference C Underwater Acoustic Engineering and Underwater Acoustic Signal Processing, Beijing, China: ASC, 2018:2. (in Chinese)
[22]曹伟浩,姚直象,夏文杰,等. 基于插值短时分数阶傅里叶变换-变权拟合的线性调频信号参数估计[J].兵工学报, 2020, 41(1): 86-94.
CAO W H, YAO Z X, XIA W J, et al. Parameter estimation of linear frequency modulation signal based on interpolated short-time fractional fourier transform and variable weight least square fitting[J]. Acta Armamentarii, 2020, 41(1): 86-94. (in Chinese)
[23]孙文俊, 杨益新. 基于蒙特卡洛方法的主动声纳信号检测性能分析[J]. 计算机仿真, 2006, 23(8): 119-121.
SUN W J, YANG Y X. Performance analysis of signal detection for active sonar based on Monte Carlo method[J]. Computer Simulation, 2006, 23(8): 119-121. (in Chinese)
[24]于勇. 基于广义参数化时频变换的铁路信号目标自动检测方法[J].自动化与仪器仪表, 2021(5): 17-20,24.
YU Y. Automatic detection method of railway signal target based on generalized parametric time frequency transform[J]. Automation & Instrumentation, 2021(5): 17-20,24. (in Chinese)
[25]薛永华,陈小龙,黄勇,等.基于广义参数化时频变换的天波雷达电离层污染校正[J].信号处理, 2020, 36(12): 2024-2031.
XUE Y H, CHEN X L, HUANG Y, et al. Ionospheric pollution correction for sky wave radar based on generalized parametric time frequency transform[J]. Journal of Signal Processing, 2020, 36(12):2024-2031. (in Chinese)
[26]张烈山,刘璞,林杰俊,等.基于重采样的主动非线性调频连续波声呐测距技术研究[J]. 仪器仪表学报, 2020, 41(10): 74-82.
ZHANG L S, LIU P, LIN J J, et al. Research on active nonlinear frequency modulation continuous wave sonar ranging technology based on re-sampling[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 74-82. (in Chinese)
[27]庞玉红,严琪,王世闯.基于瞬时频率的双曲调频信号距离估计误差分析[J]. 声学技术, 2016, 35(5): 421-425.
PANG Y H, YAN Q, WANG S C. Instantaneous-frequency-based ranging bias analysis of HFM waveforms[J]. Technical Acoustics, 2016,35(5):421-425. (in Chinese)
[28]张蒙,王海斌,张海如,等.基于粒子滤波的多普勒信息辅助目标定位跟踪算法[J]. 应用声学, 2021, 40(3): 407-414.
ZHANG M, WANG H B, ZHANG H R, et al. Doppler information-assisted target tracking algorithm based on particle filter[J]. Applied Acoustics, 2021, 40(3): 407-414. (in Chinese)
[29]WANG J, HAN Y, WANG L M, et al. Instantaneous frequency estimation for motion echo signal of projectile in bore based on polynomial chirplet transform[J]. Russian Journal of Nondestructive Testing, 2018, 54(1): 44-54.
[30]王璐, 许录平, 张华. 利用S变换的X射线脉冲星信号恒虚警率检测算法[J]. 宇航学报,2014, 35(8): 931-937.
WANG L, XU L P, ZHANG H. CFAR detection algorithm of X-ray pulsar signal using S-transform[J]. Journal of Astronautics, 2014, 35(8): 931-937. (in Chinese)


128

Accesses

0

Citation

Detail

Sections
Recommended

/