FGCM-based Modeling Method of Intelligent Situation Awareness in Complex Battlefield

CHEN Jun;ZHANG Yue;CHEN Xiaowei;TONG Yan

Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (5) : 1093-1106. DOI: 10.12382/bgxb.2021.0259
Paper

FGCM-based Modeling Method of Intelligent Situation Awareness in Complex Battlefield

  • CHEN Jun1, ZHANG Yue1, CHEN Xiaowei2, TONG Yan1
Author information +
History +

Abstract

An intelligent situation awareness modeling method based on fuzzy grey cognitive map (FGCM) is proposed the dynamic and uncertain characteristics of complex battlefield environment. Based on situation awareness theory,the situation elements are extracted by top-down task driven situation awareness method. The target threat assessment is taken as the modeling object of situation understanding, and the dynamic FGCM model of threat assessment is established by using the model characteristics of FGCM in uncertain data expression and reasoning,in which the external environment control node is introduced. The target intention prediction is taken as the modeling object of situation prediction on the basis of FGCM model structure established based on expert knowledge, and the particle swarm optimization is used to improve the parameter learning ability of intention prediction model for historical data samples. The simulated results show that the intelligent situation awareness modeling method based on FGCM can deal with the dynamic and uncertain battlefield environment better,and play a comprehensive role of knowledge and data in modeling.

Key words

situationawareness / threatassessment / intentionprediction / fuzzygreycognitivemap / particleswarmoptimization

Cite this article

Download Citations
CHEN Jun, ZHANG Yue, CHEN Xiaowei, TONG Yan. FGCM-based Modeling Method of Intelligent Situation Awareness in Complex Battlefield. Acta Armamentarii. 2022, 43(5): 1093-1106 https://doi.org/10.12382/bgxb.2021.0259

References


[1]ENDSLEYM R.Toward a theory of situation awareness in dynamic systems[J].Human Factors,1995,37(1):32-64.
[2]ENDSLEYM R.Design and evaluation for situation awareness enhancement[C]∥Proceedings of the Human Factors Society Annual Meeting. Santa Monica,CA, US: SAGE, 1988, 32(2): 97-101.
[3]SALOMONP M,WALKER G H,STANTON N A. Pilot error versus sociotechnical systems failure: a distributed situation awareness analysis of Air France 447[J]. Theoretical Issues in Ergonomics Science,2016,17(1):64-79.
[4]NGUYEN T,LIM C P,NGUYEN N D,et al. A review of situation awareness assessment approaches in aviation environments[J].IEEE Systems Journal,2019,13(3):3590-3603.
[5]马鹏杰,吴松涛.基于模糊TOPSIS的陆军合成营战场态势感知效能评估[J].火力与指挥控制,2020,45(7):132-135,142.
MA P J,WU S T. Battlefield situation awareness effectiveness evaluation of army synthetic battalion based on fuzzy TOPSIS[J].Firepower and Command and Control,2020,45(7):132-135,142.(in Chinese)
[6]KOSKO B. Fuzzy cognitive maps[J].International Journal of Man-Machine Studies,1986,24(1):65-75.
[7]ADAMASJ A.Unmanned vehicle situation awareness: a path forward[C]∥Proceedings of Human Systems Integration Symposium. Nashville,TN,US: Vanderbilt University,2007.
[8]JONES R E T,CONNORS E S,MOSSEY M E,et al.Using fuzzy cognitive mapping techniques to model situation awareness for army infantry platoon leaders[J].Computational and Mathematical Organization Theory,2011,17(3): 272-295.
[9]JIANG G H,TIAN Z Q,JIANG T.Using fuzzy cognitive maps to analyze the information processing model of situation awareness[C]∥ Proceedings ofthe 2014 6th International Conference on Intelligent Human-Machine Systems and Cybernetics.Hangzhou,China:IEEE,2014: 245-248.
[10]陈军,张新伟,高晓光,等.有人/无人机混合编队有限干预式协同决策[J].航空学报,2015,36(11):3652-3665.
CHEN J,ZHANG X W,GAO X G,et al.Limited intervention cooperative decision making for manned/UAV hybrid formation[J].Acta Aeronautica Sinica,2015,36(11):3652-3665.(in Chinese)
[11]ZHAOZ,NIU Y F.Situation-driven fuzzy cognitive maps applied in air-to-ground target attack[C]∥Proceedings of the 2017 29th Chinese Control and Decision Conference.Chongqing,China:IEEE,2017:6384-6389.
[12]陈军,徐嘉,高晓光.基于ABFCM模型框架的UCAV自主攻击决策[J].系统工程与电子技术,2017,39(3):549-556.
CHEN J,XU J,GAO X G.UCAV autonomous attack decision based on ABFCM model framework[J].Systems Engineering and Electronic Technology,2017,39(3):549-556.(in Chinese)
[13]ZHAO Z,NIU Y F,SHEN L C.Adaptive level of autonomy for human-UAVs collaborative surveillance using situated fuzzy cognitive maps[J]. Chinese Journal of Aeronauticsm, 2020,33(11): 2835-2850.
[14]DONGJ,WU G W,YANG T T,et al.Battlefield situation awareness and networking based on agent distributed computing[J].Physical Communication,2019,33:178-186.
[15]许凯,曾云秀,武万森,等.面向计算机生成兵力的意图识别行为建模框架[J].系统仿真学报,2021,33(10):2344-2355.
XU K,ZENG Y X,WU W S,et al. Research on CGF-oriented intention recognition behavioral modeling framework[J].Journal of System Simulation,2021,33(10):2344-2355.(in Chinese)
[16]杨爱武,李战武,徐安,等.基于加权动态云贝叶斯网络空战目标威胁评估[J].飞行力学,2020,38(4):87-94.
YANG A W,LI Z W,XU A,et al.Target threat assessment based on weighted dynamic cloud Bayes network[J].Flight Mechanics,2020,38(4):87-94.(in Chinese)
[17]林傲,金庭,王志锐.基于DBN的预警机战场威胁评估模型研究[J].空军预警学院学报,2019,33(5):358-361.
LIN A,JIN T,WANG Z R.Research on battlefield threat assessment model of early warning aircraft based on DBN [J].Journal of Air Force Early Warning Academy,2019,33(5):358-361. (in Chinese)
[18]张银燕,李弼程,崔家玮.基于云贝叶斯网络的目标威胁评估方法[J].计算机科学,2013,40(10):127-131.
ZHANG Y Y,LI B C,CUI J W. Method of target threat assessment based oncloudy Bayesian network[J].Computer Science,2013,40(10):127-131.(in Chinese)
[19]杨远志,王红卫,索中英,等.基于粗糙集-逼近理想解排序的辐射源威胁排序方法[J].兵工学报,2016,37(5):945-952.
YANG Y Z,WANG H W,SUO Z Y,et al.Emitter threat ranking method based on rough set and approximate ideal solution[J].Acta Armamentarii,2016,37(5):945-952.(in Chinese)
[20]奚之飞,徐安,寇英信,等.基于前景理论的空战目标威胁评估[J].兵工学报,2020,41(6):1236-1248.
XI Z F,XU A,KOU Y X,et al.Air combat target threat assessment based on prospect theory[J].Acta Armamentarii,2020,41(6): 1236-1248.(in Chinese)
[21]胡涛,王栋,孙曜,等.基于改进CRITIC-LRA和灰色逼近理想解排序法的空战威胁评估[J].兵工学报,2020,41(12):2561-2569.
HU T,WANG D,SUN Y,et al.Air combat threat assessment of improved CRITIC-LRA and grey TOPSIS[J].Acta Armamentarii,2020,41(12): 2561-2569.(in Chinese)
[22]马鹏杰,吴松涛.基于模糊TOPSIS的陆军合成营战场态势感知效能评估[J].火力与指挥控制,2020,45(7):132-135,142.
MA P J,WU S T.Battlefield situation awareness effectiveness evaluation of army synthetic battalion based on fuzzy TOPSIS[J].Fire Control and CommandControl,2020,45(7):132-135,142.(in Chinese)
[23]郭圣明,贺筱媛,吴琳,等.基于强制稀疏自编码神经网络的作战态势评估方法研究[J].系统仿真学报,2018,30(3):772- 784,800.
GUO S M,HE X Y,WU L,et al.Research on operational situation assessment method based on forced sparse self coding neural network[J].Journal of System Simulation,2018,30(3):772-784,800.(in Chinese)
[24]ZHAO J,GUO Q,TENG L,et al. Application of deep neural Network in air target threat assessment[C]∥Proceedings of the 2019 IEEE 3rd Information Technology,Networking,Electronic and Automation Control Conference.Chengdu,China: IEEE,2019:1633-1637.
[25]徐公国,段修生.基于改进Elman神经网络的目标威胁度预测评估[J].探测与控制学报,2017,39(3):101-106.
XU G G,DUAN X S.Target threat prediction and evaluation based on improved Elman neural network[J].Journal of Detection and Control,2017,39(3):101-106.(in Chinese)
[26]王海旺,史红权,李晓丹.基于直觉模糊集和贝叶斯推理的意图识别方法[J].舰船电子工程,2019,39(6):42-45.
WANG H W,SHI H Q,LI X D.Intention recognition method based on intuitionistic fuzzy sets and Bayesian reasoning[J].Naval Electronic Engineering,2019,39(6):42-45.(in Chinese)
[27]葛顺,夏学知.用于战术意图识别的动态序列贝叶斯网络[J].系统工程与电子技术,2014,36(1):76-83.
GE S,XIA X Z.Dynamic sequential Bayesian network for tactical intention recognition[J].Systems Engineering and Electronic Technology,2014,36(1):76-83.(in Chinese)
[28]周旺旺,姚佩阳,张杰勇,等.基于深度神经网络的空中目标作战意图识别[J].航空学报,2018,39(11):200-208.
ZHOU W W,YAO P Y,ZHANG J Y,et al.Air target combat intention recognition based on deep neural network [J].Acta Aeronautica Sinica,2018,39(11):200-208.(in Chinese)
[29]滕飞,刘曙,宋亚飞.BiLSTM-Attention:一种空中目标战术意图识别模型[J].航空兵器,2021,28(5):24-32.
TENG F,LIU S,SONG Y F.BiLSTM-Attention: an air target tactical intention recognition model[J].Aviation Weaponry,2021,28(5):24-32.(in Chinese)
[30]徐建平,张立凡,韩德强.基于模糊推理的空中目标意图识别[J].指挥信息系统与技术,2020,11(3):44-48.
XU J P,ZHANG L F,HAN D Q.Air target intention recognition based on fuzzy inference[J].Command Information System and Technology,2020,11(3):44-48.(in Chinese)
[31]常天庆,孔德鹏,戴文君,等.基于目标作战意图信息融合的威胁评估方法[J].控制与决策,2019,34(3):591-601.
CHANG T Q,KONGD P,DAI W J,et al.Threat assessment method based on target operational intention information fusion[J].Control and Decision,2019,34(3):591-601.(in Chinese)
[32]JOSE L,SALMERON. Modelling grey uncertainty with fuzzy grey cognitive maps[J].Expert Systems with Applications,2010,37(12):7581-7588.
[33]朱道元. 2015年全国研究生数学建模竞赛A题[J].数学的实践与认识,2016(14):4-6.
ZHU D Y. 2015 National Graduate mathematical modeling contest,question A[J].Practice and Understanding of Mathematics, 2016(14): 4-6.(in Chinese)
[34]赵福均,周志杰,胡昌华,等.基于置信规则库和证据推理的空中目标意图识别方法[J].电光与控制,2017,24(8):15-19,50.
ZHAO F J,ZHOU Z J,HU C H,et al.Air target intention recognition method based on belief rule base and evidential reasoning[J].Electronics Optics & Control,2017,24(8):15-19,50. (in Chinese)


356

Accesses

0

Citation

Detail

Sections
Recommended

/