回转体低速串联入水空泡及运动特性试验研究

余德磊;曹伟;魏英杰

兵工学报 ›› 2020, Vol. 41 ›› Issue (7) : 1375-1383.

兵工学报 ›› 2020, Vol. 41 ›› Issue (7) : 1375-1383. DOI: 10.3969/j.issn.1000-1093.2020.07.015
论文

回转体低速串联入水空泡及运动特性试验研究

  • 余德磊, 曹伟, 魏英杰
作者信息 +

Experimental Reaserch on Cavitation and Motion Characteristics of Low-speed Water Entry of Rotary Bodies in Tandem

  • YU Delei, CAO Wei, WEI Yingjie
Author information +
文章历史 +

摘要

为研究回转体串联入水过程中的空泡演化及运动特性,基于高速摄像及时序释放系统,开展了不同入水初始间距的回转体低速串联入水试验。利用图像处理技术对采集图像序列中的回转体运动进行识别提取,得到入水初始间距对回转体的入水空泡、纵向位移及偏转角的影响规律。试验结果表明:较小入水初始间距的回转体串联入水过程中,两运动体的空泡结构及尺寸均受到影响;随着入水初始间距增大,回转体串联入水过程中依次出现碰撞扰动、封闭空腔扰动、过渡扰动与弱扰动4种运动模式,在不同的运动模式中,两运动体的空泡及运动特性存在较大差异,其中碰撞扰动模式对回转体的运动特性影响最大。

Abstract

In order to study the evolutions and motion characteristics of cavitations in the process of water entry in tandem, the high-speed camera and time release system are used in testing the low-speed tandem water entry of rotary bodies at different initial spacing. The motion characteristics of rotary bodies are identified and extracted using image processing technology, and the influence of the initial spacing of water entry on cavitation evolution, longitudinal displacement and deflection angle of rotary body was obtained through test. The test results show that the cavitation structures and sizes of two rotary bodies are affected during the water entry in tandem at the small initial spacing. With the increase in the initial spacing of water entry, four motion modes, including colliding disturbance, closed cavity disturbance, transition disturbance and weak disturbance, arise in the process of tandem water entry of rotary bodies. In different motion modes, the vacuolizations and motion characteristics of two rotary bodies are quite different. The colliding disturbance mode has the greatest influence on the motion characteristics of rotary body. Key

关键词

两运动体 / 低速入水 / 空泡演化 / 运动特征

Key words

twomotionbodies / low-speedwaterentry / cavitationevolution / motionfeature

引用本文

导出引用
余德磊, 曹伟, 魏英杰. 回转体低速串联入水空泡及运动特性试验研究. 兵工学报. 2020, 41(7): 1375-1383 https://doi.org/10.3969/j.issn.1000-1093.2020.07.015
YU Delei, CAO Wei, WEI Yingjie. Experimental Reaserch on Cavitation and Motion Characteristics of Low-speed Water Entry of Rotary Bodies in Tandem. Acta Armamentarii. 2020, 41(7): 1375-1383 https://doi.org/10.3969/j.issn.1000-1093.2020.07.015

基金

国家自然科学基金项目(11672094)

参考文献



[1]秦洪德, 赵林越, 申静. 入水冲击问题综述[J]. 哈尔滨工业大学学报,2011,43(增刊1):152-157.
QIN H D, ZHAO L Y, SHEN J. Review of water entry problem[J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 152-157.(in Chinese)
[2]WORTHINGTONA M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London, 1900, 194:175-200.
[3]BELL G E. On the impact of a solid sphere with a fluid surface[J]. Philosophical Magazine Series 6, 1924, 48:753-765.
[4]MACCOLL J W. Aerodynamics of a spinning sphere[J]. Royal Aeronautical Society Journal, 1928, 32:777-798.
[5]BACKER G D, VANTORRE M, BEELS C, et al. Experimental investigation of water impact on axisymmetric bodies[J]. Applied Ocean Research, 2009, 31(3):143-156.
[6]SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry[J]. Journal of Fluids Engineering-Transactions of the ASME, 2000, 122(4):806-810.
[7]施红辉,周浩磊,吴岩,等.伴随超空泡产生的高速细长体入水实验研究[J].力学学报,2012,44(1):49-55.
SHI H H, ZHOU H L, WU Y, et al. Experimental study on water inflow into high-speed slender body with supercavitation[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(1):49-55. (in Chinese)
[8]SHI H H, MAKOTO K. Underwater acoustics and cavitating flow of water entry[J]. Acta Mechanica Sinica, 2004, 20(4):374-382.
[9]路中磊, 魏英杰, 王聪, 等. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究[J]. 物理学报, 2016, 65(1):309-323.
LU Z L, WEI Y J, WANG C, et al. Study on the influent cavitation flow of open cavity cylindrical shell based on high-speed camera experiment[J]. Acta Physica Sinica, 2016, 65(1):309-323. (in Chinese)

[10]杨衡,张阿漫,龚小超,等. 不同头型射弹低速入水空泡试验研究[J]. 哈尔滨工程大学学报, 2014, 35(9):1060-1066.
YANG H, ZHANG A M, GONG X C, et al. Experimental study of the cavity of low speed water entry of different head shape projectiles[J]. Journal of Harbin Engineering University, 2014, 35(9): 1060-1066.(in Chinese)
[11]何春涛, 王聪, 魏英杰, 等. 圆柱体垂直入水空泡形态试验[J]. 北京航空航天大学学报, 2012, 38(11):1542-1546.
HE C T, WANG C, WEI Y J, et al. Experimental study on the vertical bubble shape of a cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1542-1546. (in Chinese)
[12]李佳川, 魏英杰, 王聪, 等. 加热球体入水空泡实验研究[J]. 物理学报, 2016,65(20): 157-164.
LI J C, WEI Y J, WANG C, et al. Water-entry cavity of heated spheres [J]. Acta Physica Sinica, 2016, 65(20): 157-164. (in Chinese)
[13]宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟[J]. 北京理工大学学报, 2017, 37(7): 661-666, 671.
SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body[J]. Transactions of Beijing Institute of Technology, 2017,37(7):661-666,671.(in Chinese)
[14]李达钦, 王国玉, 张敏弟, 等. 不同密度比球体入水空泡流体动力特性研究[J]. 宇航总体技术, 2019, 3(1):29-38.
LI D Q, WANG G Y, ZHANG M D, et al. The investigation of cavity dynamics during water entry of the spheres with different dendity[J]. Astronautical Systems Engineering Technology, 2019, 3(1):29-38. (in Chinese)
[15]黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究[J].力学学报, 2019, 51(1):36-45.
HUANG C, WENG X, LIU M B. Study on low-speed water entry of super-hydrophobic small spheres [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1):36-45. (in Chinese)
[16]陈晨, 魏英杰, 王聪. 小型运动体高速倾斜入水空泡流动数值研究[J]. 兵工学报, 2019, 40(2):334-344.
CHEN C, WEI Y J, WANG C. Computational analysis of cavity flow induced by high-speed oblique water-entry of axisymmetric body[J]. Acta Armamentarii, 2019, 40(2):334-344.(in Chinese)
[17]侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2):332-341.
HOU Y, HUANG Z G, GUO Z Q, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile[J]. Acta Armamentarii, 2020, 41(2):332-341. (in Chinese)
[18]JENKINSA, EVANS T. Sea mine neutralization using the AN/AWS-2 rapid airborne mine clearance system[C]∥Proceedings of 2004 IEEE Aerospace Conference Proceedings. Big Sky, MT, US:IEEE,2004:2999-3005.
[19]何春涛, 王聪, 何乾坤, 等. 圆柱体低速入水空泡试验研究[J]. 物理学报,2012, 61(13):281-288.
HE C T, WANG C, HE Q K, et al. Low speed water entry of cylindrical projectile[J]. Acta Physica Sinica, 2012, 61(13):281-288.(in Chinese)
[20]路丽睿. 双回转体并联入水过程多相流动及运动特性究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
LU L R. Water entry multiphase flow around double revolution body in parallel[D]. Harbin: Harbin Institute of Technology, 2018.(in Chinese)






第41卷第7期2020年7月
兵工学报ACTA ARMAMENTARII
Vol.41No.7Jul.2020

Accesses

Citation

Detail

段落导航
相关文章

/